JOURNAL OF AMRAN UNIVERSITY

J._Amr. Uni. 03 (2023) p.75

Oscillation Properties of Third Order Nonlinear Delay Dynamic Equations on
Time Scales

F.S. AL-dheleai
Department of Mathematics, Faculty of Education and Applied Sciences,
Amran University, Amran, Yamen

Abstract
In this paper, we shall investigate the oscillatory properties of third order nonlinear delay dynamic
equations. Applying suitable comparison theorems and by a Riccati transformation technique, we
establish some new sufficient conditions which insure that every solution of this equation either oscillates
or converges to zero. Our results not only unify the oscillation of third order nonlinear differential and
difference equations but also can be applied to different types of time scales with supTg="co-Wesupport
our results with suitable examples.
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1. Introduction

A time scale T is an arbitrary nonempty closed subset ofithe reals#iumbers. The theory of time scales
was introduced by Hilger [1] in his Ph.D. thesisiin,1988 in order to unify continuous and discrete
analysis. Two books on the subject of time scales oy ‘Bohner and Peterson [2, 3] and the references
cited therein. By comparison with“some first dynamic/equations whose oscillatory characters are
known and by means of a Riecati transformation technique, we obtain several new sufficient
conditions for the oscillatiomfor salutions,of the nonlinear dynamic equation with Delay of the form

azy\ A n
(a(t) ((b(t) (xA(t))‘“)A) ) + g F(x(gi(@)) =0, £, (1.1)
i=1

Where a4, a, ai€ quotients of “pesitive odd integers. We assume that the following conditions
satisfied:

(A1) aand b arepositiveyreal valued rd — continuous functions on T.

(AZ) qi € Crd([o, OO)T, [0! OO) ), fori = 1;2; e, L

(A)f. € C(Ry R) suchithat’xf(x) > 0,f'(x) >0 forallx #0 .

(A4) 906 Crafl0, )1, [0, 0) ) such that g;(t) <t, g{(t) =0 and lim infg;(t) = o , i =
1,2,..,n.

In addition, we witl make use of the following conditions:

(S1) —f(=x) = flxy) = f(0)f () forxy >0,

(Sy) f(x)/x* =K > 0, K is areal constant, x > 0,

(S3) fF)—f) =B, y)(x—y) forx,y #0,

1
where B is a nonnegative real valued function and fa~*(x)B(x,y) =1 >0 forx,y # 0
and A is a constant .
If T =R, the equation (1.1) becomes the third order nonlinear delay differential equation of the
form
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(ao (6O ©)™))" Z G f(x(g:(t)) =0, t=1t. (1.2)

If T =N, the equation (1.1) becomes the third order nonlinear delay difference equation of the
form

A (am (a(bm)(axm)™)) ™) Zq&n)f(x(gl(n)))—o n=n,. (13)

In recent years, there has been an mcreasmg mterest in the study of the problém of determining the
oscillation and non-oscillation of solutions of dynamic equatiehs,of the equation (1.1) and its
special cases. In (2006) Erbe et al. proved several theorems_provided suficient conditions for

oscillation of all solutions of the third order dynamic equation of the form:

y A
(c(t) ((a(t)(x(t))A)A) ) + f(6x(®) =0, (1.4)
depend on condition
f c? (s)As =00, | a '(s)As = co. (1.5)
to to

In (2011)by means of the Riccati transfofmation technique, Lt et al. studied the Oscillation criteria
for third-order nonlinear dynamic equations

x®(6) + p(Ox" (z(t)) = 0. (1.6)
And by condition (1.5) they discussednthe oscilfation results for the third order nonlinear delay
dynamic equations

(e(t) (e (x(@)A)A)y)A b (ex(0)) =0, (1.7)

In (2011) by a Riccati transformation,technique, Han et al. established some suficient conditions

for the oscilléation, behavior @f, solution of third-order nonlinear delay dynamic equations of the
form:

A
(e (b(t)(x(t))A)A) 4 a(0f (x(x®)) =0, (1.8)
under the,condition
f a 1(s)As= of| b71(s)As = . (1.9)
to to

In (204.1) by a Riccati transformation technique, Li et al. studied the Oscillation results for third-
order nonfinear delay dynamic equations on time scales of the form

A
(a(t) (r(t) (xA(t))A>y> +f (t,x(r(t))) =0, (1.10)

under the condition (1.5).
In (2021) by a Riccati transformation technique, AL-dheleai et al. discussed the oscillation criteria
for third order nonlinear mixed neutral dynamic equations of the form

NS
(e (bO® +pa(Ox(¢ = 1) + P2 (Ox(¢ + 7)) )

+q,()x(t —13) + g, (O)x(t +14) =0, t >t (1.11)
under the condition (1.9).
For an excellent introduction to the calculus on time scales, see Hilger [1], and Bohner and
Peterson[2,3]. For further results concerning the oscillatory and asymptotic behavior of third order
dynamic equation, we refer to the papers [4-19] and the references cited therein. Since we are
interested in the oscillatory behavior of solutions near infinity, we assume that supT = oo
(unbounded above) and define the time scale interval [t,, o0) by [tg, )T = [ty,0) N T. By a
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solution of the equation (1.1), we mean a nontrivial real-valued function x € C};[T,, ©), T, = ¢,
which satisfies equation (1.1) on the [T,, o), where C,, is the space of rd —continuous functions.
A solution x of the equation (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative and non-oscillatory otherwise. Equation(1.1) is called oscillatory if all its
solutions are oscillatory. The main aim of this paper is to establish some sufficient conditions which
guarantee that the equation (1.1) has oscillatory solutions or the solutions tend to zero asn — oo. In
this paper, the details of the proofs of results for non-oscillatory solutions will be carried out only
for eventually positive solutions, since the arguments are similar for eventually negative solutions.
We provide some examples to illustrate the main results. Our results not only unify the oscillation
of third order nonlinear differential and difference equations but also can be applied to different
types of time scales with supT = co. The paper is organized as follows. In section 2, we will state
and prove the main oscillation theorems. In section 3, we illustrate our results with suitable
examples.

2. Main Results

In this section, we establish some new oscillation criteria for the equationg(1.1) underithe following
conditions:

© 1 © 1

f a @2(s)As =, | b %(s)As = oo, (2.1)
to tO
© _1 © _1

j a %2(s)As < «, b ai1(s)As = oo, (2.2)
to tO
® _1 ® _1

f a %2(s)As < «, b a1(s)As < oo, (2.3)
to to

We begin with some useful lemmas, which will be used ini@btaining oyr main results. We Let

9(0) = min{g (0, g2(0, ., Gu(0)}, Q(O) = Y\gi B
i=1

g . W g(t) . «
5:(g(0),ty) = f a %(s)As, ()= f al @2 (s) As JWA(t) = KQ(t) f b @1(s)As
t, t ty
Lemma 2.1. Let x(t) be anfeventually posttive solution of the equation (1.1) which satisfies
A

x2(t) >0, (b(t) (xA(t))"”)A > 04 <a(t) ((b(t) (xA(t))al)A)%) <0 forallt>t,

Then there exists’t Zit, suchrthat
1
L )

N t
) @ () (a(t) ((b(t) (xA(t))al)A) ) f a @ (s)As | (2.4)

t2

1

where

a.= a1a,.
A

Proof. Since (a(t) <(b(t) (xA(t))al)A>a2) <0, we have a(t) <(b(t) (xA(t))al)A>a2 is non-

increasing; then, we obtain,
1
t

b(®) (xA(t))al = b(t,) (XA(tz))a1 + J a_aiz(s) <a(5) <(b(s) (xA(s))al)A>a2>a_2 As

tz
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1

> (a(t) ((b(t) (xA(t))al)A)a2>a_2 f 4T (s) Bs.

ty
It follows that
1

XA = b (e) (a(t) <(b(t) (xA(t))al)A> 2>a1a2 ( f Q" (s) As> .
The proof is complete. m :

Lemma 2.2. Assuming that (2.1) holds, let x(t)be an eventually” positive selution of equation
(1.1). Then, for sufficiently large t, there are only two possible cases:

i A
(D: x(t) >0, x2(t) >0, (b(t) (xA(t)) 1) >0
(11): x(®) > 0, x(8) < 0., (b(6) (xA(t))al)A >0

Proof. Pick t; > t, such that x(g(t)) > 0, for t 27t,. Since x(t)ISan eventually positive solution
of (1.1). From equation (1.1), (4,), (4;) and (43), we see that

ap A
(a(t) ((b(t) (xA(t))al)A> > <0, for all t >

1 A
Then, a(t) (b(t) (xA(t))a) is a non-incréasing function and thus x(t), x%(t) and

(b (#0)")

are eventually of one sign, There are the following four possibilities to consider

M x>0, (b (x*®)%

(: x4 <8, (b (xA(t))

(any: x2 @ o0, (b(t) (xA(t))

(V)i < 0§(b(o) (% A(t))“l
) >

a
We“¢laim /that (b(t) (xA(t)) . If not, then, b(¢t) (xA(t)) " is strictly decreasing there
exists a‘negative'céonstant M and t; > t, such that

aq A @2
a(t) ((b(t) (#0) ") ) <Mforall t>t,
Dividing by a(t) and integrating the above inequality from t; to t, we obtain
aq aq i ‘ _i
b(®) (x2(®) < b(ts) (x2(t))  + M@ j (a(s)) 22As.
t3

a
Letting t - o, and using (2.1) then b(t) (xA(t)) " 5 —o . Then there exists a t, = t; and
constant K < 0

b(®) (x*®) " < b(ta) (x2(t)) " =K <0,

Dividing by b(t) and integrating the above inequality from t, to t, we obtain
t

) > 0 for all large t,
ai\ A
1) > 0 foralllarge t,
A
) < 0 for all large t,and

aq

A
<0 foralllarge t.

x(t) < x(ty) + K“il j(b(s))_“ilAs.
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Letting t — oo, and using (2.1) then x(t) - —oo, which contradicts the fact that x(t) > 0. Then,
we have

A
(b(t) (xA(t))a ) > 0. And thus either x2(t) > 0 or x2(t) < 0. The proof is complete.m

Lemma 2.3. Assume that (2.1) and (I1) of Lemma 2.2 hold, function x(t) is an eventually positive

solution of the equation (1.1). If
1

1 a;
f b_“il(v) (jo a_“_lz(u) (jo Q(s) AS> 2 Au) Av = oo, (2.5)

t

Then x(t) > 0ast — oo,
Proof. Pick t; > t, such as that x(g(t)) > 0. Since x(t) is a positive decreasing solution of
equation (1.1), then lim x(t) =1y = 0. Assume that [; > 0 then x(g;(t)) =, for t > t, > ¢,.

From equation (1.1), We have
A

aq A @z
0> (a0 (b0 (#)")' ) )
+ f1DQ®.
By integrating equation (2.6) from t to oo, we obtain
aq A @z -
a(t) ((b(t) (x*®) ) ) > f(ly) f Q(s) As.

It follows that

(b (+*©)")’
<f ((ltl))> < f Q(s )As) . (2.7)

Integrating the above inequality from t to oo ind
—x4(t)

2fi(za fa-a—i(u) (f ots

bai(t) | &

(2.8)

Integrating the above in

x(t) > fally

This contradicts condition (2.5). Then gim x(t) =
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2.1. Nonexistence of solutions of type (I)

Next, we shall establish some criteria for the nonexistence of solution of type (I) for the equation
(1.2).

Theorem 2.1. Let (A;) — (A4) and (S;) hold. If the first order delay equation

o) s @
yA() + Q(f (yé(g(t))>f f b%(s)( f a“Z(u)Au> As\

u=ty

=0, (2.9)
is oscillatory, then equation (1.1) has no solution of type (I).

Proof. Let x(t) be an eventually positive solution of equation (1:2) of type (I), then, there is a
to € [to, ) such that (1) holds for t > t,. From Lemm@&(2.1), we have
1

t a
_1 1 _1
x2(t) = b @ (t)ya(t) <f a %(s) As) ,
2
a\A a2
where y(t) = a(t) ((b(t) (xA(t)) ) ) . Integrating,the above inequality from t, to t, we

obtain,
1

N

t aq
x(t) > fb_“il(s)y%(s)<fa_“iz(u) Au) As

t2
1

t 1 S 1 a;
1 -1 1
> ya(t) fb “1(s)<fa a2 (u) Au) As.
[ 2
There exists‘alt; > t, With g(t) = t, forall t > t5 , such as that
1

g@®) s a
1 1
x(g(®)) = y%(g(t)) f b @i(s) (f a %2(u) Au) As.

t2
From equation (1:1), (S;) and the last inequality, fort > t5 , we obtain

—y4(®) = £ (x(9(0)) @(®)

/ ICH s = \
> Q(Of (yi(g(w))fk I b‘al(s>< I a‘%(u)Au> As).
t t

Integrating the last inequality from n to oo, we get
1

y(®) = fw Q(s)f (ﬁ(g(s))) f 7S)b‘a%(v)< f a‘a_lz(u) Au)alAv) As.

) )
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The function y(t) is obviously strictly decreasing. Hence, by the discrete analog of Theorem 1 in
[4], we conclude that there exists a positive solution y(t) of the equation (2.9) which tends to zero.
This contradicts that (2.9) is oscillatory. The proof is complete . m

Corollary 2.1. If T = N, then (2.9) becomes

gn)-1 1 s—-1 1 0%
A(yn)w(n)f(ya(g(n)))f > bal(s><z a%(u)) )-o,

S=ny u=ny

is oscillatory, then equation (1.2) has no solution of type (I).

Corollary 2.2. Let (4,) — (4,) and (S,) hold. If the first ordef delay equation

to

g s ail \a
_1 _1
YA + KQ®y(9(®) | f b al(s>< f a az<u)Au> AS ) _o,

is oscillatory, then equation (1.1) has no solution of the type (1).

Theorem 2.2. Let (A;) — (A,) and S3) hold. Further, assume that there exists a positive rd-
continuous A — differentiable function £(£)yisuch that

(

tI |
th_)r(r)lo suptfi L(s)Q(s)%F D A | = o0,
’ \ </1.3(S)5fl(9(5),t2)> /

(B2®), = max{0,p*(®)}
Then equation (1.1)*has no solytion of the type (I).

Proof, Let x(t)ie an eventually positive solution of equation (1.1) of type (I). Then, thereisa t, €
[tgfco)q such that(l) holds for t > t, . Define the Riccati type function w(t) by

w(t)

a+
+

A (B°9) ()

(2.10)

a(t) <(b(t) (xA(t))al)A>a2
f (x(g®))

Then w(t) > 0. From (2.11) and (S5), we have

a0\ %2
(GG <“(t) <(b(t) (=©)") ) )

= B(t) (2.11)

A

() =pA(®)

f(x(ga)) f(x(g(t)))
I CCERRS (r (x(s®))) |
f(x(g®)f (x(g(®))

81


HP
New Stamp


J. Amr. Uni. 03 (2023) p. 75 F. S. AL-dheleai

0 (((b(x4)@)H)7) (a(t) <(b (®) ("A(f))al)A) )

A

A
O YT @)
7(BE)™)M)%B ((x(g%),
B (Gn).x t)))A.(2.12)
f(x(g™)f (x(g(®))

By Lemmaz2.1, there exists t; > t, with g(t) > t, forallt > t

(X(g(t)))A

> b"“il(g(t)) (a(g(t)) ((b(g(t)) (x*(g®))"

(2.13)

A

Since <a(t) ((b(t) (xA(t))al)A>a2> <09
a(®) ((b(t) (xA(t))‘“)A)le

) 2. (2.14)
Then it follows that
a’ (((b(x)*1)H)9)%

(2.15)

A

(o (o)) )

f (x(a®))
a9y ((x(9%)), x(9(®)))

F(x(g)f (x(9®))
, (2.11), (2.16) and (S3), we have
wt(t) < —B(Q(L) + @wa(o
h B"l (®)
a2 9O tZ)b;i(g ©) (o), (217)
(B°D) @
Using (2.17) and the inequality
“+1/a - a® Ba+1

Bu — Au <D a4

> 0, (2.18)

1 _1 1
(@ (b)) *)ab @ (g(1))8," (g(t), t2) - (2.16)

From (1.

we have
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o (B2©) bu(g()

(a + 1)at 1 @’
<Aﬁ(t)6f‘1 (g(®), tz)>

Integrating the last inequality from t, to t, we obtain

|

wi() < -B®Q(®) +

a+1
A ay
f . (ﬁ (S))+ ’ (g(S)) As < w(ty).

; (a + Dot 1 «
: \ (Aﬁ(swfl (g(s), t2>>

Which is contrary to (2.10). The proof is completed. m

B(s)Q(s) +

Corollary 2.3. If T = N, then the equation (2.10) becomes

( \

e (80(s) UH%(g(5))

((X + 1)a+1 1 >0‘
The following theorem gives a Philes -type oscillation criteria for the equation (1.1).

n—-1

|
lim sup > | p(s)Q(s) —

n—-oo

= 00,

%]

’ \ 1pes)5™ (g), )

Then equation (1.2) has no solutigh ef the type(l):

Theorem 2.3. Assumé€ that(A4,) — (Azhand (S3) hold. Let B(t) be a positive rd-continuous A —
differentiable functionFurthermore, we/assume that there exists a double function {H(t, St =
s = 0} and h(tgs).such that

() H(t,t)Z0fort =0,

(i))H(t,s) >0 font>s >0,

(iii) H has a nenpositiVegeentinuous A —partial derivative H%s(t,s) with respect to the second
variable, and satisfies

hes) = - @)
' JHGs)
If
: 1 a®  H(Es)9(ts)|,
I8 SUP e 0) Oj H(t9)B$)Q) - e POk ]As = o0, (2.19)
where
A L BA(t) h(t,
o(6):= at1 'B(t)1 671 (g(@),tp), 9, s) = <( B“(t))+ __h@s)
(Bo) @ ()b (g(®)) VH(,s)

Then the equation (1.1) has no solution of the type (I).

Proof. Let x(t) be an eventually positive solution of equation (1.1) of the type (). Then, there is a
to € [ty, ) such that (1) holds for t > t,. From the proof of Theorem 2.2, we find that (2.17)
holds for all t > t,. From (2.17), we have
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A
, B < —0*© + 5307
VIO 0O, tZ)baH(g(t))( c’(t))aTﬂ. (2.20)
(Bo@®) «
Therefore, we have
t : : (ﬂA(s))
jH(t, s)B(s)Q(s) As < — fH(t S)w?(s) As + H(t s) w?(s)

t

— jH(t, s)(p(s)(w”(s))T(t) As.

t2

Integratlng by parts and using H(t,t) = 0, we have
fH(t, $)B(s)Q(s) As < H(t, ty)w(ty) + HAS(t s)w?(s) As @7 (s) As
: £ a+1

— fH(t,s)(p(s)(w"(s))TAs

t2
t

= H(t, t))w(ty) + f (HAs(t, s) + H(t,s)

t2

a+1l

(t,s)p(s) (a)"(s)) @ As

t

= H(t, t,)w(t,) + fH(t,S)l?(t,S) y H(t,s) s)(a)"(s))aTﬂAs.
From (2.18), we ha\ize

H(t,s)9% (¢, s)
a+ 1)a+t (go(s))a

j H(t, $)B()Q(s) As <A, byt

t,s)9 (¢, s)

‘As < H(t, t,)w(t,) < H(t,0)|w(t,)].

(p())”
t
H(t,s)9%t1(t, s)
a As < H(t,0){ | IB(s)Q(s)|As + |w(t)] -
(0®) ]s {([ s)Q(s)|As wz}
_ . a®  H(Ls)9™(L,s)
lim sup H(t 5 Oj HEIPEO) -y () ]

< f BS)QE)NAs + lw(t,)] < o,
0
which is contrary to (2.19). This completes the proof of Theorem 2.3. m

Corollary 2.4. If T = N, then (2.19) becomes
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lim sup = o, (2.19)

m—co H( ,0) £ (H(m np(n)Q(n) — 4

Then equation (1. 2) has no solution of the type (1).

9%t (m,n)H(m,n) >
(p(m)"

The following theorem gives a Kamenev-type oscillation criteria for equation (1.1).

Theorem 2.4. Let (4;) — (A4) and (S,) hold. Further, assume that theremexists a positive rd-
continuous A — differentiable non-decreasing function g (t), such that

RGOS (g(s>)>

(@ + D (B ()62 (g8), t2)

= o0. (2.21)
Then equation (1.1) has no solution of type (I).
Proof. Let x(t) be an eventually positive solution of equatien (1.1) of type (1). Then, there is a
to € [to, ) such that (1) holds for t > t,. Definethe function w(t) by

w(t)
aq A a2
a(t) ((b(t) (xA(t)) ))

=Fl x*(g(t))
Then w(t) > 0. From (2.22), we have

0 (b)) <“(t) <(b(t) ("A(t))al)A) )

1 t
lim sup = f (t—s) <Kﬁ ($)Q(s) —

(2.22)

A

A A
wi(t) < BA(D) 5<(5%0) +p® x%(g(D)) R
—B(®) a? ((b(x")*)A)7) 2 (x“(g(t)))
(O} (g®)

By Lenima 2.2, we see thatx®(g?(t)) = x%(g(t)), and that from Keller,s chain rule [2] , we
obtain

Thus
A

& (b Gxt) ™))y <“(t) (W) (xA(t))al)A> )

w™"(@) <PA® +B(1)

x*(g°(1)) *(9®)
(M™% (x*(9®)) , a1
—af(t) (7 O (9 D) (x(g°®))  x*(g(®). (2.23)

By Lemmaz2.1, there exists t; > t, with g(t) > t, forall t > t5 such that
1

o~ g® ) ay
(x(ga)))Azb‘a%(g(t))(a(g(t))((b(g(t))(xﬂ(g(t))) )A> ) ( [ a az(s)AS> .

t2
A

Since <a(t) ((b(t) (xA(t))al)A>a2> < 0and g(t) < t, we get
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a” (GG ™)) < a®) ((b(t) (xA(t))“l)A)az
a0\ %2
< a(g®) ((b(g(t)) (x*(g)) ) )

From (2.23) and the above inequality, we obtain

s (a0 (o0 (xA(t))‘“)A)az

A g
SR TGRS (9®)

¢ ir(lt)i 571 (9(6), t5) () ©. (2.24)

(Bo®) © b (g(®))
From (1.1),(2.18), (2.24) and (S,), we have
wi(t) < —KB(1)Q®)

1 (BA@)+ b™ 2.25

@D o) @225)

From (2.25) for t > t, , we obtain
“2(9(s)) t

‘ 1
t[(t—s) <K,B(S)Q(s) “ @t D = % (5000, 0,) As < —t[(t—s) w?(s) As.

Since

A

N

1
e s (GBI CLIODI

A% — B% > qB% (A — B).
t=s) =(t=0a(s))]=rt—0a(s)) (als)—s).

(=) < —r(t—a(s)) .

— f(t —5)"w(s)As < (t —t,) w(t,) — 1 J(t —0(s)) tw?(s) As.
Then, we have ’ ’

(@ + D (B(5)) 67 (g(s), t)

: B)" " be(g(s))
= [a-sr <KB(S)Q(S) 1 Pe) )As
t2

< (t . t2>r w(ty) — ti f (t — )" (s) As.

Hence,
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)T w(ty).

1 (BA(S))TH b*2(g(s)) . t—t,
<
@+ D™ (p(5) 5 (950 t) | ( t

1 t
" f (t—s) <Kﬁ(s)Q(s) -

Hence,

. 1 : T —
th_)r?o supt—rt[(t —5) Kﬁ(S)Q(S) (a + D+t (ﬁ(s))a5fz(g(s)' ty)

which is contrary to (2.21). The proof is completed. m

(F®). b(gs) >
+ ? |As < w(ny),

Corollary 2.5. If T = N, then (2.21) becomes
a+
+

GO 1b"‘z(g(s))> _
=00, (2.21)

n—1
1
lim sup— " (n = )" | Kp()Q(s) -

S=ng

(@ + D (p(s))* 58 (g(s),n3)
Then equation (1.2) has no solution of the type (1).

Now, by using the inequality
x%—y*>217%(x —y)*forallx >y >0 anda =1,

Theorem 2.4. Let (A;) — (4,) and (S,) hald. Further, assume ghat there exists a positive rd-
continuous A — differentiable non-decreasing functien g (t), such that

t
1
limsup [ =) (KB (T

A Q) 1)

T J%-a a-1 ? |As. (2.21)
(1(96))  B()67(g(s),t,)

Then the equatigh (1.1) Ras no solutien.of type (1).
Proof. Let x(£) bean eventually positive solution of equation (1.1) of type (1). Then, thereisa t, €
N such thaty(l) holds¥er t > t,2Define the function w(t) by

w(t)

az

a(®) ((b(t) (xA(t))“l)A> |

= B(t) 2 (90)
Then w(t) > 0. From (2.22), we have

a” (G )Y)7) <“(t) (W) (xA(t))al)A> )

(2.22)

A

A A
W) < pAO—Cetoy T RO D)
(i (x*(9())
x%(go())x*(g(®)) '

Now, by using the inequality
x* —y*>217%(x —y)*forallx >y >0 anda > 1,
then, we have

(o) -y (@) =)
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= 27 (u(g())" (x(g"i)gq;;(g(t)))
=21 (#(9(1:)))0(_1 (xA(g(t)))a,a > 1.

Thus
A

0 (((b(x4)™)H)7) <a(t) ((b (®) (xA@)al)A) )

wt(®) < pAD) + B(t)

x%(g°(®)) x*(g(®)) 3
a1 a®((b(x®)™)%)9) (x2(g(t))
-2l (ﬂ(g(t))) B(t) x“(g"(t))xa(f](t)) ) (2.23)

From Lemma 2.1, there exists t; > t, with g(t) > t, forall t > t5 such that

az

agy (9O .
(xA(g(t)))a2b"“z(g(t))<a(g(t))<(b(g(t))(xA(g(t)))al)A> )( f a“Z(S)AS) .

2
a,\ A

Since <a(t) ((b(t) (xA(t))al)A> > < 0,9(t) < t, we get
a(o(®)) ((b(a@) (xA(a<t>))“1)A>a2 < a@ ((b(t) (xA(t))“”)Afz
< a(g(®) ((b(g(t)) (xA(g(t)))“l)Afz.

From(2.23) and the above inequality, we obtain
a\ A

e (e (o) T

A o
A O RS < (g(0)

a-1 B(®) 2
—21-« 5, , (1)) 2.24
elo) O (O (@) (2:24)

By using (1.1), (2.24), (S,) and thejineguality.Bu — Au? < g ,A > 01in(2.24), we have
wt(t) < —KB()QM) ,
N (B ®)pp=(9®)

a—

+ -a 1 .
g (#(g(t))) B8 (g(b),ty)

From (2:25)\for t Z5t, , we obtain
: 1 (), b (e()
[ Prowes)” 5=

L (1(g(s))  BIE(g(s).t2)

Since

(2.25)

As < — f(t — 5)"w?(s) As.

ty

((t =) < —r(t—a(s)) 1.
Thus,

— j(t —5)"wh(s)As = (t —t,))"w(ty) — r J(t —5) 1w(s) As.

Then, we have
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(5))_ b2(9))

a—1 As
(u(9() B2 (g(s). 1)

P 1
" f (t =9 | KBSQE) ~ 53

t—ty\" r . o
S( n ) a)(tz)—t—rf(t—s) w?(s) As.
2
Hence,

L (PO) ()
2 (o)) B8 (@l

As'S (t — tz)r w(ty).

t
1
= [ €= ( kBGIOE) - :
[

We get,
2
() b ()
27 (u(9()) )8 (glo), 1)

which is contrary to (2.21). This completes the proof,of Theoremyz:4+«m

t
tim sup - [ (6= 57| KB(:)Q(5) - b5 < 0(ty),
[

Corollary 2.6. If T = N, then (2.19) becomes
n-1 2 o
lim sup—— S sy (K oo A (B (g(g)))

n—e T 235%p(s)  877(g(s),np)

s=ny
Then equation (1.2) has no:solution of the typex).

2.2. Nonexistence®f solutions of typex(l})
Next, we shall establishisome critéria for the nonexistence of solution of type (1) for equation (1.1).

Theorem 42.5.< Assume“that (A,) — (4,) and (S;) hold, and there exist two functions
&(n) andnn) such as that

AE(t) = 0)&(t) Sigand n(t) = g (E(f(t))) < t. (2.26)
If the first order delay equation
xA(t)
10 £w) = \‘al
1 _1 _1
+ fa (x(r](t))) b @ (t) f a % (w) ( f 0(s) As> M| (2.27)

is oscillatory, then equation (1.1) has no solution of the type (II).
Proof. Let x(t) be an eventually positive solution of the equation (1.1) of the type (II). Then, there
isa t, € N such that type (Il) holds fort > t,. By integrating equation (1.1) from t to é(t), we
obtain

§(0)

a(t) ((b(t) (xA(t))al)A>a2 > f Q(s)f (x(g(s))) As.

Using (2.26) and (S;), we get
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HO, az
ag A _1 1
(b (#®)") = amOr (x(s)))| | ewas
t
Integrating again the above inequality from t to &(t) , we find
1

{0 ) a,
—b(t) (xA(t))al > f a @ (u)fe (x (g(f(u)))) f Q(s)As | Au.

t
It follows that

£® £ 2 \al
1 -1 -1
@2 e (x@))p = | [ amw| [ 0w as Au)

Finally, integrating the above inequality from t to oo, we have

o0 /f(v) . &) a;
x(t) = f% (x(n(t)))j I b @i(v) k] a %z (u) f Q(s)As | Au | iAv.
t t

t J
The function x(t) is obviously decreasing strictly . Hence, by the discrete analog of Theorem 1 in

[14], we conclude that there exists a positive solution of equation (2.27) which tends to zero. This
contradicts that (2.27) is oscillatory. The proof is complete.m

Corollary 2.7. If T = N, then (2.26) and (2.27) becomes
Aé(n) = 0,é(n) >nandn(n) =g (E(E(n))) <n. (2.26)

If the first order delay equation

1\ @1
L fm-1 §(s)-1 a;
M) + b EF (xm))| Y am | Y otm | W=, @27)

is oscillatory, then equation (1.2) has no solution ofithe type (1)),
2.3. Oscillation criteria under condition (2.1)
Next, we shall establish some oscillation criteriaffer equation (1.1) under condition (2.1).
Theorem 2.6. Let (2.1),(2.5) and(J;)holdpwhere (J,), (S;) and (2.9)hold. Then equation (1.1)
is oscillatory or lim x(n) = 0.
n—oo
Proof. On the contrary,&ssuming that (1%1) has a non-oscillatory solution, then, without loss of
generality, there is agt; =& such.that x(t)’= 0 and x(g(t)) > 0. From the proof of Lemma 2.2

x(t) is either of typ€ (1) or (1), Erom™Th&drem (2.1), x(t) is not of type (). From Lemma (2.3), we
have gim x(t) # 0.The proof is‘cemplete. m

The proof‘of each of the follewing corollary is similar to that of Theorem 2.6 and hence the details
are omitted.
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Corollary 2.8. Let (2.1),(2.5) and(J,) hold. Where (J,), (S3) and(2.10) hold. Then equation
(1.1) is oscillatory or th_)r?o x(t) = 0.

Remark 2.1. If &; = 1,n = 1. Then Corollary 2.8 reduced to a special case of Theorem 1 in [5].
Remark 2.2. Corollary 2.8 extended and improved Theorem 2.1 in [8].

Remark 2.3. If a(t) = b(t) = 1,a; = a, = 1,n = 1. Then Corollary 2.8 reduced to a special case
of Theorem 2.6 in [6].

Corollary 2.9. Let (2.1),(2.5) and(J;) hold. Where (J5), (S3) and(2.19) hold. Then equation
(1.1) is oscillatory or th_)r?o x(t) = 0.

Remark 2.4. If &; = 1,n = 1. Then Corollary 2.9 reduced to a special case of Theorem 5 in [5].
Corollary 2.10. Let (2.1),(2.5) and(]J,) hold. Where (J,), (Sz) and(2.21) hold. Then equation
(1.1) is oscillatory or th_)r?o x(t) = 0.

Remark 2.5. If &; = 1,n = 1 Corollary 2.10 extended and improved Theorem 4 in [5].

Theorem 2.7. Let (2.1) holds, and there exist two functions &é(t) and n(t) suchthat(2.26) and
(2.27) hold. Assume that (J;) holds. Then equation (1.1) is oscillatory.

Proof. On the contrary, assuming that (1.1) has a non-oscillatory solutiony.then, witheut loss of
generality, there is a t; > t, such that x(t) > 0 and x(g(t)) > QgFrom the“proof of Lemma 2.2
x(t) is either of type (1) or (II). From Theorem (2.1), x(t) is not ef type\(l). From,Theorem (2.5),
x(t) is not of type (I1). The proof is complete.m

The proof of each of the following corollary is similar tg'thathef Theorem 2.7 a@nd hence the details
are omitted.

Corollary 2.11. Let (2.1) holds, and there exist two functions ¢(t) and n(t) such that (2.26) and
(2.27) hold. Assume that (J,) holds. Then equation (1.1) is oscillatory.
Corollary 2.12. Let (2.1) holds, and there exist tw@ functions é((t) and n(t) such that (2.26) and
(2.27) hold. Assume that (J5) holds. Themeguation (1.2)is. os¢illatory.
Corollary 2.13. Let (2.1) holds, and there'existitwo functions &(t) and n(t) such that (2.26) and
(2.27) hold. Assume that (J,) holds. Then equation(2ad) is oscillatory.

2.4. Nonexistence of solutions,of type (111)

Next, we shall establisSh some criteria for the nonexistence of solution of type (I1l) for equation
(1.2).

Theorem 2.8¢ Assume that (43— (A3) and (S;) hold, if the first order delay equation
1

1 2
oo/ g o a; \ \

t{ La_aiz@ tf 0f tf ) A | f g (fﬂa-a%(mk Ar/ /i Ac
= o, (2.28)

is oscillatoryy then equation (1.1) has no solution of type (I11).
Proof. Let x(t) be an eventually positive solution of equation (1.1) of type (Il1). Then, there is a

t € [ty, ) such that (1) holds for t > t,. Then, we have
t t 1

x(6) — x(t;) = f x8(s) As = f b (s) (b(s) (x*)) ™)™ s

t3 t3
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> (b®) ()" f bE(s)As,  fort>ts
and hence

x(t) = (b(®) (xA(t))“l)i N b @i (s) As, for > t,.

There exists a t, = t; with g(t) > t; forall t > t,, such that
1 g(t)

x(g®) = (b(g(t))( A(g(t)) f b 0‘1 (s)As,  fort=>t,.

From equation(1.1), (S;) and the last mequallty, we obtain, fort > t,

9@
0= (a0) ((©)") +owF (vail(ga))) f ( | bR () As>, (229)

t3

where v(t) = b(t) (xA(t))al. Itis clear that v(t) > 0 and Av(t) < 0. It follows that
~a®) (v2(0) " = —a(ty) (v:(t)) for £ > t,.

Thus
1
@2 (t,)vA(t
—v2(t) = —M fort = t,.
a%(t)

Integrating the last inequality from t to oo, we obtain

o)

1 1 1
v(t) > —a“_Z(t4)vA(t4)f a %2(s)As = Klf a %(s)As, foft> ta

t

1
where K, :== —a®(t,)v2(t,) > 0. There exists a ts > tawith g(Eh=> ¢, for all & > t , such that

v(g(t)) = K, f a_“iz(s) As, fort > t.

g@®
Integrating (2.29) from t5 to t and using the above ineguality, we find
1

9(r)

j 0 f( ] b (s) As> f <K1 j T Ak) ar < a(ts) (v ()™ — a0 (v©)",

9@)
By using (S;), we see that
1
1 2

/ t g(r) . o0 1 a, \
k% | Q(r)f< [ b_“—l(s)As>f< I a‘%(k)Ak) Ar) < —v8(0),
ts

i3 g(r)

1

where L == f (Kl‘“). Integrating the above inequality from ¢ to oo, we obtain

1

1 az

L jo “2(3) (j Q(T)f(fr)b @1 (v) Av>f< Jooa_“iz(k) Ak>a1 AT} As < v(ts) < oo,

g(r)
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which contradicts the condition (2.28). The proof is complete. m

Corollary 2.14. If T = N, then (2.28) becomes
1
1\ @2

[oe)

1 /S—l g()-1 1 oo 1 061\ L
K %(s)l\z Q(r)f< ). b “l(u)>f< D @ %(v)) ) — o 228)
s=ng \ r=ng u=ng v=g(r)

Then equation (1.1) has no solution of type (I11).

Theorem 2.9. Assume that (A;) — (A3) hold and (S,), let B(t) b€ a positive rd-continuous A —
differentiable function. If

t/ 1 / o ; ro1 o\ \ail\
lim sup b ai(r) a 2(s) ¥(u) —<L AT Au | As Ar =oc0. (2.30)
o | 0 o [ W
"\ ° J

Then equation (1.1) has no solution of type (I11):
Proof. Let x(t) be an eventually positive solutiomof equation (1.1) of type (I111). Then, there exists

a A
t, > t; such that x2(t) > 0, (b(t) (xA(t)) 1) < 0'fomallst > t,. Then, we have
1

0

b (x2@) )™
o OL0) )
(b=
Integrating the above fequalitythom ¢, Eesty'we obtain
1
POE®) )

As

x(©) - ()2 &
ta (b(s))al
a1 ai g 1
> (b(t) (xA(t)) ) . f T As. (2.31)
ty (b(s))“l
Hence theresexists a£; > t, such that
1 9@®)

H(9®) Mplo®) ((9®)) ") [ — s forezr,
t (b(s))“l

From equation (1.1), (S,) and the last inequality, we obtain

g(®) «
(a® (I;A(t))az)A +kQ(® (v(g®))” < f L As> <0,t>ts (2.32)
t (b(s))“_l

where v(t) == b(t) (xA(t))al. It is clear that v(t) > 0 and v2(¢t) < 0. It follows that

(a®) (vA(t))az)A +w(Ove(g(t) <0,  fort >t (2.33)

Since g(t) — o ast — oo, we can choose t, > t5 such that g(t) > t, fort > t, and thus
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[0

v() —v(g®)) = g(ft) a(s)vA(s)ﬁAs

<v*(g(®)a(g(®) fﬂAS < a(t)vi(t,) f—As

Thus

~v(g() < aev*e) | %A

g(®)
By substituting the above inequality in (2.33), we get

(at® (vﬂ(t))‘“)A < L“ZlP(t)( j %m) . fort=t, 23

g@®)
where L = a(t,)v*(t,) < 0. Integrating this inequality from t, to t, we

t a2
a; as 4%]
a(®) (v*®©)" <a® (*©)" - ate) (v3e)) ™ < L f
Ly
where v2(t) < 0. Integrating again from ts to t, we have

v (t) <Lf “2(s)<f'{’(u)<
g( )

ts
or equivalently

From condition (2.30),
proof is complete . m

Corollary 2.15. If T = N, then (2.30) becomes

n—-1 / L u-1 s—1 oo a2 aiz\
rlll_>nolo sup IKb_aT(u) Z a_a_z(s)<z ‘I’(t)( Z a‘1(1)> > /

s=ny t=ng T=g(t)

Then equation (1.2) has no solution of type (I11).
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2.5 Oscillation criteria under condition (2.2)
Next, we shall establish some oscillation criteria for equation (1.1) under condition (2.2).

Theorem 2.11. Let (2.2),(2.5) and (2.28) hold. Assume that (J,) or (J,) or (J3) or (J,) holds.
Then equation (1.1) is oscillatory or tILr?o x(t) = 0.

Proof. To the contrary assume that (1.1) has a non-oscillatory solution. Then, without loss of
generality, there is a t; > t, such that x(¢t) > 0 and x(g(t)) > 0. From (2.2), there exist three
possible cases (I), (1) and (111). From Theorem (2.1) or (2.2) or (2.3) or (2.4) respectively, x(t) is
not of type (I). From Lemma (2.3), we have tILrg x(t) = 0. From Theorem (2.8), x(t) is not of type

(I1). The proof is complete.m

Theorem 2.12. Let (2.2)and (2.28) hold, and there exist two functions £(t) and n(t) such that
(2.26) and (2.27) hold. Assume that (J;) or (J,) or (J3) or (J,) holds. Then equation (1.1) is
oscillatory.

Proof. To the contrary assume that (1.1) has a non-oscillatory solution. Then, withouifloss OF

generality, there is a ¢; > t, such that x(t) > 0 and x(g(t)) > 0. Then, proceeding as.ifithe proof
of theorem (2.11), we obtain x(t) is not of type (I). From Theorem (2.5), x(t) is notof typey(ll).
From Theorem (2.8), x(t) is not of type (I11). The proof is complete.m

Theorem 2.13. Let (2.2),(2.5) and (2.30) hold. Assume that (J;) or (Jz) or(J3)f (J,) holds:
Then equation (1.1) is oscillatory or tlim x(t) = 0.
Proof. To the contrary assume that (1.1) has a non-oscillatory solution. Then, without loss of

generality, there is a ¢; > t, such that x(t) > 0 and x(g(t)) > 0¢Then; proceedifg as in the proof
of theorem (2.11), we obtain x(t) is not of type (). From Lemma (2.3), we have, tlim x(t) = 0.

From Theorem (2.9), x(t) is not of type (I11). The proof is compléete. m

Theorem 2.14. Let (2.2)and (2.30) hold, and there existitwo functiohssé(t) and n(t) such that
(2.26) and (2.27) hold. Assume that (J;) or (J,) or (Jshor (Ju)pholds. Then equation (1.1) is
oscillatory .

Proof. To the contrary assume that (1.1) has anen-oscillatory solution. Then, without loss of

generality, there is a t; > t, such that x(£)*$,0 and x(g(t) )y»* 0. proceeding as in the proof of
theorem (2.12), we obtain x(t) is notgof type (H)ar (). "Erem Theorem (2.9), x(t) is not of type
(1. The proof is complete.m

2.6 Nonexistence of solutions of type (1V)

Next, we shall establish somexcriteria- for the nonexistence of solution of type (IV) for equation
(1.2).

Theorem 2.15. AsSume that (4,) — (43) and (S,) hold, if

0o l

j b_“ll(l)kja_“lz(k) fQ(s)f fb_“il(r) Ar |As Ak) Al = o0 (2.35)

to g(s)

Then equation (1.1) has no solution of type (1V).
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Proof. Let x(t) be an eventually positive solution of equation (1.1) of type (IV). Then, there is a
t € [ty,o0) such as that (IV) holds for t > t,. We one can choose t; >t, with g(t) >t,

forall t > t3, such that
0 1

x(g(0) = — f b (r) (b (x2) )™ ar

g(t)

oo

~(b(9®) (xA(g@)))“l)“% [ v

g(®)

1
> K, f b @1(r)Ar fort > ts,

g(®)
1

where K, = — (b(g(®) (x*(g(0)) )™ > 0. Thus fquation (1.1) and\(s,) yield
A

(a(t) ((b(t) (xA(t))“l)A)a2> < -()f (x(9(®))

< LQ(t)f( jb_“il(r) Ar).

g(®)
where L = —f(K;) < 0. Integrating the'above inequality from t; to t, we find

(0]

a(® ((b(t)( 3)") ) f Q(S)f< i

g(t)

1
b ai(r) Ar) As.

Hence,
1

(b (xA(t))“) N az(t)<fQ(s)f< jb m(@m)m) .
g(s)

Againdategrating the abovesfequality from t; to t, we find

‘ 2
b(t) (xA(t))al < [ f “2(s)< f Q(u)f< f b “1(r) Ar>Au> As.

t3 g(s)
It follows that
1

x2(t) SKgb_a%(t) f “2(s)<fQ(u)f< fb “1(T)Ar>Au >C¥2As) .

t3 g(s)

1
where K5 := La. Finally, Integrating the above inequality from t; to t, we have
1

1 44}
t N

x(t) < x(t3) + Ks j b_“il(s) kf 6(2 az(u) <f Q(v)f( J b 0‘1 (r) Ar) Av )az Au) As.

t3 g)

From condition(2.35), we get x(t) » —oo as t - oo, which contradicts the fact that x(t) is a
positive solution of (1.1). The proof is complete.m
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Corollary 2.16. If T = N, then (2.35) becomes

1\ @
Z b_“il(l)l/lz a_“%(k) kZQ(S)f Z b_“il(r) ) =00, (2.35)

l=n, \ k=ng s=ng r=g(s)
Then equation (1.1) has no solution of type (IV).

Theorem 2.16. Assume that (S,), (4;) — (43) hold. If

1

) u ag

1 1
j b @1(u) f a %(s)As Au = oo, (2.36)
to to

Then equation (1.1) has no solution of type (1V).
Proof. Let x(t) be an eventually positive solution of equation (1.1).ef type (IV)AaThen, there is a

a <A
t € [ty,)r such that (IV) holds for t > t,. Sinceda(t) (b(t) (xA(t)) 1) iS non-increasing
function there exists a negative constant K, and t, = t; such that

A\ %2
a(t) ((b(t) (xA(t))al) ) <K, fort = t,,
Dividing by a(t) and integrating the last inequality frém. t, to t, We obtain
1
1ol =
x4(t) < b “(O)K! j a %(s)As
ty

Integrating the last inequalityffrom t, tot;, we obtain
1

t u aq
1 M _1
x(t) < x(ty) + K7 ] b ai(u) Ja az(s) As )Au.
t1 %1

Letting t —go0uthen, by, (2.36) we deduce that x(t) — —oo, which is contradiction to the fact that
x(t) > 0f

Corollary 2.174 1T T"=%Nythen, (2.36) becomes

1

i kb_“ll(u) uz_:l a_“%(s) al) = 00. (2.36)

Then the equation (1.1) has no solution of type (1V).
2.7. Oscillation criteria under condition (2.3)

Next, we shall establish some oscillation criteria for the equation (1.1) under condition (2.3).
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Theorem 2.17. Let (2.3),(2.5)and (2.35) hold. Assume that (J,) or (J,) or (J3) or (J,) holds.
And (2.28)0r(2.30) holds. Then equation (1.1) is oscillatory or gim x(t) = 0.

Proof. To the contrary assume that (1.1) has a non-oscillatory solution. Then, without loss of
generality, there is a ny; = ny such that x(t) > 0 and x(g(t)) > 0. From (2.3), there exist four

possible cases (1), (1), (111) and (I11). From Theorem (2.1) or (2.2) or (2.3) or (2.4) respectively,
x(t) is not of type (I). From Lemma (2.3), we have, tlim x(t) = 0. From Theorem(2.8)or(2.9)

respectively, x(t) is not of type (I11). From Theorem (2.15), x(t) is not of type (IV). The proof is
complete. m

Theorem 2.18. Let (2.3) and (2.35) hold, and there exist two functions &(t) and n(t) such that
(2.26) and (2.27) hold. Assume that (J,) or (J,) or (J3) or (J,) holds. And (2.28)0r(2.30) holds.
Then equation (1.1) is oscillatory.

Proof. To the contrary assume that (1.1) has a non-oscillatory solution. Then, without loss of
generality, there isa t; > t, such that x(t) > 0 and x(g(t)) > 0. Then, proceeding as in the proof
of Theorem (2.17), we obtain x(t) is not of type (1) or (111). From Theorem (2&8)px(t) is not of type
(I1). From Theorem (2.15), x(t) is not of type (V). The proof is complete

Theorem 2.19. Let (2.3),(2.5)and (2.36) hold. Assume that (Jg™er (J.)0er (J5) of (J,) holds.
And (2.28)0r(2.30) holds. Then equation (1.1) is either oscillatory or tlim x(t)=0.

Proof. To the contrary, assume that (1.1) has a non-oscillatory<solution: Then,;without loss of
generality, there isa t; > t, such that x(t) > 0 and x(g(t)) >'0. Then, proceeding as in the proof
of theorem (2.17), we obtain x(t) is not of type (I) or (I1)." By Lemma (2:3), We get 2im x(t) = 0.

From Theorem (2.16), x(t) is not of type (V). Thepreof is complete. m

Theorem 2.20. Let (2.3) and (2.36) hold, and there exist two functions &(t) and n(t) such as
that (2.26) and (2.27) hold. Assume that (J,) 'Ok (J,) or (J3) or (J,) holds. And (2.28)0r(2.30)
holds. Then equation (1.1) is oscillatory,

Proof. To the contrary assume that (1i1)phas a non=@seillatory solution. Then, without loss of
generality, there is a t; > t, such that x(£), > 0.and x(g(t)) > 0. Then, proceeding as in the proof
of Theorem (2.17), we obtainaa(s). is not oftype (I) or (1) or (I11). From Theorem (2.16), x(t) is
not of type (IV). The proof i§ complete. m

3.Examples:
In this section we will'show the applications of our oscillation criteria by three examples. We will
see that the equations in the example are”oscillatory or tend to zero based on the results in section 2.

Example 3{1. Consider the thirgherder delay dynamic equation
a2

(a(t) ((b(t) (xA(t)>a1)A> >A + i @ f (x(g:(®)) = 0 (3.1)

(witha(t)=b(t) =d,n=1,a; = a, =1,q(t) = - Yy >0,8(t) =t andf(x(g(t))) =

tg(t)
x(g(@®)):
All the conditions of corollary (2.8) are satisfied. Hence every solution of equation (3.1) is either

oscillatory er satisfies lim x,, = 0.

n—0oo

Example 3.2. Consider the linear delay dynamic equation
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(a(t)((b(t)(ﬂ(t) )) qu(t)f x(g:(®))) = 0 (3.2)

witha(t) =b(t) =1,n=1,a; = a, = 1,q(t) = E ,B() =1land f (x(g(t))) =(t=
2),H(t,s) =t—s.
All the conditions of corollary (2.9) are satisfied. Hence every solution of equationy(3.2) IS either
oscillatory or satisfies lim x,, = 0.

n—->oo
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