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Abstract

Using quantum magneto-hydrodynamic theory, the nonlinear propagation of magnetoacoustic waves have
been investigated in a quantum magneto-plasma having dissipative ions fluid as well as quantum
electrons and positrons, including exchange-correlation and electrons/positrons spin effects. The
Korteweg-devris-Burger equation is derived employing the reductive perturbation method. It has been
found that the quantum magneto-plasma system under consideration supports buth magnetoacoustic
solitary and shock waves depending on the values of the plasma parameters. The effects of quantum
plasma parameters (such as exchange-correlation coefficients, magnetic field strength, kinematic
viscosity and the concentrations of electrons and positrons) on the magnetoacoustic shock waves (both
monotonic shock waves and oscillatory shock waves) are examined. The profiles of both monotonic and
oscillatory shock waves are found to be significantly affected by these parameters.The results of the
current study may be useful to understand the properties of magnetoacoustic waves propagating in dense
space plasma environments where the quantum mechanical effects of electrons and positrons are
included.
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1.Introduction

Over the past decade, quantum plasmas have gained considerable attention due to its potential
applications in the microelectronic devices [1], nanoscale systems [2], laser plasmas [3] and in
dense astrophysical plasmas [4-7]. In fact,the study of quantum plasma becomes important when
the thermal de Broglie wavelength associated with the plasma particles becomes of the order or
greater than the particle Debye length, and the plasma behaves like a Fermi gas. In such situations,
the quantum mechanical effects play a significant role in the collective behavior of plasma particles
[8-11]. It is well-known that, when a plasma is immersed in an external magnetic field, there exists
the possibility of a new class of wave modes with a frequency much less than the plasma frequency,
such as Alfven waves [12,13] and magnetoacoustic (MA) waves (or magnetosonic waves) [14].
The magnetosonic wave is a fundamental mode of electromagnetic wave propagating perpendicular
to the ambient magnetic field in a plasma media. It arises due to ion inertia, which provides the
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inertial force and the restoring force comes from the compression of both magnetic field and density
of plasmas.

Generally, applicable theory to study the behavior of MA waves in a quantum magneto-plasma is
usually referred to quantum magneto hydrodynamic (QMHD) theory, which is a natural extension
to the classical theory of magneto hydrodynamics (MHD) that is used to describe the conventional
magneto-plasma fluid. In the recent years, many authors have examined the linear and nonlinear
characteristics of the MA waves in the framework of the QMHD approximation in different
quantum plasma systems. For example, Marklund et al. [15] studied the magnetosonic solitons in a
Fermionic quantum magneto-plasma including the effects of quantum Bohm potential and electron
spin-1/2. They found that the system of the QMHD equations admit rarefactive solitons due to the
balance between nonlinearities and quantum diffraction effects. Shukla [16] investigated the linear
MA waves in a quantum magneto-dusty plasma, considering the effects of quantum Bohm potential
and electron spin-1/2. Masood [17] derived quantum Kadomtsev—Petviashvili—Burgers equation and
studied the MA shock waves in two dimensional quantum plasma. Mushtag and Qamar [18] studied
nonlinear magnetosonic waves in quantum plasmas with/without spin effects using the QMHD
model. Hussain and Mahmood [19] studied the MA shock waves in electron-ion quantum plasma
by using the QMHD maodel taking into account the kinematic viscosity of the ions and quantum
Bohm potential. Hussain et al. [20] investigated the nonlinear propagation of the MA waves in
quantum electron-positron-ion plasmas. They found that the concentration of positrons has
significant impact on the dispersive properties of the fast MA wave.

However, in order to fully understand the properties of MA waves in quantum magneto-plasma,
the exchange-correlation potential effects should be taken into account, especially when spin
magnetization effects are present in the system [21-25]. In fact, the source of the exchange-
correlation potential is as follows: the interaction of the quantum plasma particles can be separated
into a Hartree term (due to the electrostatic potential of the number density of plasma particles) and
a particle exchange potential due to the electron spin-1/2 effect. Sahu and Misra [26] investigated
nonlinear propagating of the magnetosonic shock waves in a dissipative quantum magneto-plasma
consisting of a quantum electron and classical viscous ions, including the electron exchange-
correlation effects. They used the QMHD model and found the exchange-correlation effects are
more dominant and responsible in the transition from monotonic to oscillatory shocks to other
guantum effects.

The aim of this article is to investigate the characteristics of the nonlinear excitations of the MA
waves in quantum electrons-positrons-ions magneto-plasma, considering the contributions of the
spin-1/2 and the exchange-correlation effects for both electrons and positrons. For ions, we neglect
their quantum contributions because of large inertia. The outline of this paper is as follows: the
basic equations governing the quantum magneto-plasma system under consideration are presented
in Sect. 2. Derivation of Korteweg-devris-Burger (KdVB) equation is given in Sect. 3. Analytical
solutions of the KdV-B equation is given in Sect. 4. While numerical results and discussion are
provided in Sect. 5. Sect. 6 is devoted to conclusions.

2. Governing Equations

We consider a collision-less electron-positron-ion plasma placed in an external magnetic field,
along the z direction as By = Bye, Where e, is the unit vector along the z-axis. The electrons and
positrons are assumed to be inertialless and degenerate having spin and exchange-correlation
effects. While the ions are taken to be inertial and classical. Incidentally, in dense astrophysical
environments, the Fermi pressure for the ions is negligible as compared to that for the electrons and
positrons. So the pressure effects are neglected for the ions, whereas the electrons and positrons are
assumed to obey the equation of state for a zero temperature Fermi gas. Thus, the continuity and
momentum equations governing the dynamics of the ions are respectively given by

on;
a_tl + V- (nu) =0, (1)
0
m;n; (a + u;- V) u; = en; (E + u; X B) + ndVZui (2)
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where n;(u;) is the density (velocity) number of the ions, m; is the ion mass, E is the self-
consistent electric field and 7, is the dynamic viscosity of the ions. The continuity and momentum
equations for the electron/positrons are given by

W+V-(njuj) =0, ®)

where nj(uj) is the density and velocity number of plasma particles (electrons or positrons) and

Ppj = (2EEanﬂf/g/S)njs/3 is the Fermi pressure due to the Fermionic nature of the plasma particles
with nj, is the equilibrium density of the plasma particles, €¢; = kgTr; is the Fermi energy, Tr; =

h2(3n2nj0)2/3/2m kg is the Fermi temperature, m(= m, = m,,) is the electron/positron mass, kp
is the Boltzmann constant, 7 is Planck’s constant divided by 2. Here, the label j characterizes the
electrons (j = e, with g, = —e), and the positrons (j = p, with q, = e). The last term in Eq. (4)
(Fq;) represents the total quantum force on the plasma particles i.e. electrons (j = e) or positrons
(j = p), which can be expressed as

h%n;
Fy; = Zm] v (J% vi/?,-) + nupL;(&)VB — n; WV, (5)
The first term in Eq. (5) is the gradient of the so called Bohm potential, the second term comes
from the spin-1/2 of electron or positron where uz = efi/2m is the "Bohr magneton™ and B =
|B|. Here, L;(¢;) = tanh(g;) is the Langevin function, which is due to the magnetization of a spin
distribution of the plasma particles in thermodynamic equilibrium where &; = ugB/Eg; is the ratio
of the Zeeman energy of the magnetic moment in the external field to the Fermi energy (€g;) (also
called the magnetization energy). In the most dense plasma situations, the condition ;B < Eg; (or
g < 1) is satisfied, and thus we can use the approximation tanh(ej) ~ g = ujB/kgTr; [27]. The
last term in Eq. (5) is the exchange-correlation potential gradient force where V;* denotes the
exchange-correlation potential of the electrons (j = e) or positrons (j = p),which is given by Eqg.
(8) and can be simplify to V}* ~ —1.62(e2/47teo)nj1/3 + 5.65(ﬁ2/m)nj2/3 [26].

The Maxwell’s equations are given by

OB
= —_—— 6
VXE o 1 (6)
VXB =po(J+T) + 550 (7)

where E is the electric filed vector, ¢ = 1/,/uy€, is the light speed in a vacuum, u, is the
permeability of free space, J = e(niui + nyu, — neue) is the true electric current densities and
Ju =V X M is the magnetization spin current densities of the plasma particles (electrons and
positrons). Here,M = M, + M, where M, and M, are the magnetization of electrons and positrons
respectively. M = 2anjuBS/h|qj| for each species, where S is the spin vector. In the limiting case
where the time-scales are much longer than the Larmor period, the spin vector can be approximated
by § = hq, tanh(ugB/€r;) b/2|q;|, b = B/|B| is a unit vector in the direction of the magnetic
field.

Now, to simplify the above equations further, we use the following non-dimensional variables:

j njO; VA ) cib i,j VA ) BO,
E
E->——mr, M—>@M,
VaBy By

where w.; = eBy/m; is the ion cyclotron frequency and V, = B,//uom;n;, is the Alfven speed.

Using the above relations into the Egs. (1)-(7), the normalized basic equations can be written in the
following form:
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on;
a—‘ +V-(nu) =0, (8)
u
( ™ + (u; - V)ul) =n;(E + u; X B) + nV?u; 9)
on;
T —2+v- (mu;) =0, (10)

_ B 2/3 H? 2\/_ 1/3 2/3
0=—E—-u,XB—=Vn; 2 + Be3BVB + BaVn,’” — fyVn.’~, (11)

2 .

2 2
0=E+upr—?Vn§/3+ > <V ‘/_> BVB+p1/3ﬁaVn1/3
\/Tl_p o

p*/*ByVn,”, (12)
where gy = upB,/Ere is the normalized Fermi-Zeeman energy, p = n,o/ne (0 <p < 1) is the
equilibrium density ratio of positron-to-electron, o = Tg, /T, is the Fermi temperature ratio of
positron-to-electron which is related to p by o = p?/3. B = C2/V}? = 2uyn;o€re /B2 is the plasma
beta with C;s = (2€,/m;)*/2is the quantum ion acoustic speed. H = w ;i//mm;V}? represents
the normalized quantum parameter, § = VZ/c? and n = nqws/min;VZ is the normalized
viscosity coefficient. Here, y and a represent the exchange-correlation coefficients, which are given
by y = 5.65(h2n2*/2mEg,) ~ 0.59 and a = 1.62(e?nl}?/8neyEr,) , and the normalized
magnetization density M is defined by M = [Be3 /2a(1 — p)](on, + pn,)B.
3. Derivation of Korteweg-devris Burger Equation
In order to derive the Korteweg-devris Burger (KdVB) equation, we use the standard reductive
perturbation method [28] consider the propagation wave in x-direction and thus V= (d/dx, 0, 0),
u; = (usx, usy,usz) where s = i for ions, s = e for electrons and s = p for positrons. Therefore
the stretched variables are defined as:
& =€ (x = W), T =¢e3/2¢, (13)
where € is a small expansion parameter which lies in the range 0 < € < 1 and V, is the normalized
phase velocity of the wave to be determined later. The perturbed quantities are expanded in terms of
the smallness parameter e in the following form:

1 2
n " ng )\‘ ( )\‘
u (€Y) (2)
S =0 )+ el o |+ e |+ (14)
1 B / B®@
E
y 0 D (2)
Ey Ey

Uy 0 w @
+ €3/2 + ¢5/2 4o, 15
(Ex> (0) € (E( )) € (E(2)> (15)
Substituting Egs. (13) —(15) into Egs. (8)-(12) and collecting the lowest order terms (e3/2) of the

ion continuity and x, y components of the ion momentum equation give the following set of
equations:

an§1) aui(;)

—_ X 16
v, 5 + 5 0, (16)

@

ou;

@, @ _

Ey’ +uy +V, a? =0, (17)

@ _ @ _
Ey” —u, =0, (18)

The lowest order terms (e3/2) of continuity equation and x, y components of momentum equation
of electrons give the following set of equations:
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angl) augf

— = 19
b et =0 (19)
_ €Y (1)
(1) (1) ﬁ(l ae) ane 2 0B 20
E — =
x T lUey + 5 & 5 0, (20)
ESY —ul) =0, (21)

and the lowest order terms (e3/2) of positron continuity equation and x, y component of momentum
equation of positrons are

1) €Y
on, Uy

_ - (22)
e o T
_ (¢D) 2 (1D
o) @ _ ,8(0 ap) dn,” Pes dBYY (23)
ES —uly =0, (24)

where a, = (a — 2y) and a, = p*/3(a — 2p*/3y). The lowest order terms (e3/2) of Faraday’s law
gives
9E® 9BW

—-V =0. (25)
& P oé
The lowest order (e) terms of x and y component of Ampere’s law is described as
W, P wo__1 o_ 26
Uiy +1_pupx 1_p1;t;x 0' ( )
1 1
(1 + 2o )63(1) N ped ang ) Besp  Ony, 1 O P L@
1-p/ 9§ 2(1-p) 9§ 20(1-p) 8¢ 1-p % 1-p P ¥
(€Y
— 8V, —2-=0,
Pag (27)
where X, = Beé (o + p)/20. From equations (18), (21), (24) and (25), we obtain
o _ @ _ 0 _ @O _
Ey7 =Upy =Upy = U = VpB(l), (28)
Using the above equation with the equations (16), (19) and (22), we get
€Y)
W_ 0 __ @ _ _U
n=n,’ =n,’ = BW = [;—:. (29)
Substituting Egs. (28) and (29) into Egs. (17), (20), (23) and (27), we get
€Y)
du;
1 _ €Y)
Uy =% a_;zx —Ey7, (30)
€))
w__2PF ou; )
Ugy _—3—%(1—%—355)6—;‘—@ ) (31)
2 €Y)
w_B( _, 3\ L 32
upy—gvl)(a a, a) 3¢ E.’, (32)
€Y)
1 2%, \ 0u; p 1
—(1- 2 _ ) ix &y @ _ 1 _ _ 33
Vp( 8V, _1—]0 _af +uy, +—1_pupy —1_puey 0 (33)

Substituting Egs. (30)—(32) into the Eqg. (33), the linear phase velocity of the MA wave is obtained
as follows:

(1+6)(1-p) ’
where 9 = pa, + a,. It can be noted from Eq. (34) that the linear phase velocity V, is modified due

to the presence of spin-1/2 and exchange-correlation potential effects.
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To the next higher order (¢%/2) terms of ion continuity and x, y components of ion momentum

equations, we get the following set of equations:
an?) an®  u? an(l) (1)

L ix _o, (35)
ar P ar "o T oz
ousy ouy  ou? ousy
(1) (1) @ _ @ _ (g W
a—f;c_Vpnl af _VP algx + ix ? E ly -n; (Ex +uiy)
92u
(1),, ix _
B U, =1 9¢? 0, (36)
ou;) @ @ )
Ly 2 2 1
et (Ey —ul )—B(l)uix = 0. (37)

The next higher order terms (e3/2) of electron continuity and x,y components of electron
momentum equations give the following equations:

angl) v anff) N aug? N an(l)ugc) —0 (38)
a1 P9 o9& o0&
(1) (2) 2 73, (1)
@ , (@ o B m on ﬁ on,” H?0°n,
E” +ugy + BWug, — (1 + 2y — 2a)n, 65 f BT
Kol (2) F):1¢Y)
— Bed — Be2BW = 0.

Peo g~ Feob 5 (39)
Ej(,z) =u® 4, Hp®, (40)

The next higher order (e3/2) terms of positron continuity and X, y components of positron
momentum equations give the following set of equations:
Onz(f) Onéz) Ouz()zx) On(l) (1)

-V + =0, (41)
ot P og ¢ ¢
€)) 3, (1)
on H?d3*n
) 2 (1) (6 p
E +uyy + BWuyy += (a + 2p*3y — 2p3a)n; 65 7 353
<2> €)) ©)
3 0B &5 0B
(a—ap) ﬁ OB(l) +'B =0,
¢ o 0¢ (42)
E)(,Z) = ugc) + uz(,?B(l). (43)
The next higher order (e2) terms of x component of Ampere’s law gives
®
0E, 1 1 P r_
) (1) (1) (2) ®,,@ (2) (1) ®
5Vp 9 +1_puex+1_p Uex — Uy — Ny Uy — 1—p p Upx 1_p Ny “Upx (44)
=0.
The higher order (¢5/2 ) terms of Faraday’s law and y component of Ampere’s law yields
9B® 9B®@ JEP
-V +—2-=0, (45)
a1 FIET]
4@ 4 nOy® p @, P ow__1 o__1 MOMC
Ty T ey YT e ey T tey T e Mey
2
N (1 % )aB<2> _ Pé on'? _ Pegp omy
1-p a(g) 2(1—?)) 0¢ (2)0(1—;9) ¢
1 2 1
B RO LS WA R LA
1-p) ™ 0§ P o Jt ' (46)
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ly ] ey
relations given in Egs. (28)-(33), we obtain KdVB equation for MA waves in a dissipative quantum
plasma described as follows:

Finally, eliminating, «2, u$?), u2and EZ , B® n}z), uj(,f) from Egs. (35)—(46) and using

€9) €Y 1) €Y
ou;, +ou® ou;, i C 3ug, _p 0%u;, —0 (45)
ot X098 0¢&3 0¢? '

where the coefficient of nonlinearity (i.e., Q) is given by

_ 1 'B 4/3
Q= 2Vp2(1—p)(1+5){9 [5(po+1—-9)+a(p*?+1)] - 125, + 2(1 — p)
+3(1-p)W2 —2(1—p)(1 + 5)%2}. (6)
The dispersion coefficient (i.e., G) is given as
1 V3 1 H?
G= v __pr1It (47)
260+1)|(1+6) (1-p)ay,
and the dissipation coefficient (i.e., R) is given as
_No
=G+ (48)

4. Analytical Solutions of KAVB Equation

The nonlinear KdVB equation (45) describes the weakly nonlinear MA wave when the plasma
system has both dispersive and dissipative effects. In order to obtain an analytical solution of this
equation, we introduce the transformations

x=&-Utr, uPED =V (49)
where y is the transformed coordinates with respect to a frame moving with velocity U,. Using the
transformations (49) in the KdVB equation (45) we get
U dv dv d3v dzv (50)
- OE+QVE+Gd_)(3_Rd_)(2_ 0.
Integrating Eq. (50), with using the boundary conditions of V, dV /dy, and d?V /dy? — 0 as y —
+00, we get

d2v  _dv Q
G——-R—+—=V?-U,V =0. 52

dy? dy * 2 0 (52)
Now, we first consider the non-dissipative case (i.e. R = 0), which leads to the following energy
equation

1dV\* Q U,

(== = ypy3__y2= 53

2(d)(> +6PV ZPV 0 (3)

Using the boundary conditions V = dV /dy = 0 at y — +oo, the solitary wave solution of Eq. (53)
is

V =V, sech? (%), (54)

where V,,, = 3U,/Q and A= 2,/G /U, represent the amplitude and width of the wave, respectively.
From Eqgs. (46) and (47), we find that the coefficients Q and G are modified by the inclusion of
exchange-correlation and spin-1/2 effects. This means that the profile of the MA solitary wave (the
amplitude, width and phase velocity) is modified by the inclusion of exchange-correlation (via
parameters a and y) and spin-1/2 (via the normalized Zeeman energy &,) as well as the other
plasma parameters such as p, o and plasma beta 5. Only the width of the MA solitary wave is
modified by the inclusion of quantum Bohm potential (via the quantum diffraction H). Now, after
indicating the solitary wave solution which arises from neglecting the Burger term, we take into
account the dissipation effect, i.e. R # 0, and its resultant shock waves. The tanh-method [29] is
employed to investigate the shock wave structure of Eq. (45). Now, we introduce a new
independent variable Y = tanh(}), due to which Eqg. (52) transforms to
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d?v dv
G(l—Yz)Zm— (1—Y2)(R+ZGY)W+%V2—UOV = 0. (55)
It is obvious that, Eq. (55) is a Fuchsian-like nonlinear ordinary differential equation. Assume the

series solution in the form
N

V(Y) = z @Y. (56)
j=0

The upper limit (N) can be determined by the subtle balance method. According to this method,
balancing the highest order nonlinear term that has the exponent 2N, with the highest order
derivative that has the exponent N + 2, in Eq. (52) yields 2N = N + 2 that gives N = 2. Therefore,
the finite power series solution in terms of Y can be expressed as

V() =ay+ a,Y +a,Y? (57)
Substituting Eq.(57) into Eq.(55), collecting the coefficients of each power of Y™, 0 <r < 8,
setting each coefficient to zero, the unknowns parameters a,, a; and a, are determined as

1 12R 12G
aAg = E(UO + 126), a = _g, A, = ———. (58)

Q
Therefore, the analytical solution of the KdVB equation is given by
1 12R
Vi) = 6 [UO — Ttanh()() +12G sechz()()]. (59)

The correlation between dissipation and dispersion terms participates strongly in structuring the
shock wave. When the dissipation effect is the most prominent, the dispersive term should be
disregarded in Eq. (52) (i.e., G — 0), and accordingly, the KdVB equation (45) redacts to Burger's
equation, and then Eq. (52) can be rewritten as follows

av Q

R—==V2-U,V. (60)
dy 2
Equation (60) admits a monotonic shock wave solution of the form
Uo Uo
iy > 1
%4 0 [1 tanh (2R )()], (61)

where y = & — U,t. It is clear that, the above analytical solution exhibits only astrictly monotonic
shock structure. On the other hand, to discuss the oscillatory shock wave profiles, we assume that
the solution of Eq. (52) has the form V(x) =V, + V'(x), where V_ represents the shock amplitude
with |V'| « |V.|. Using this solution in Eq. (52) and then linearize it with respect to V', the
following equation is obtained

d*v' RaV' U, |,

i Gd)(+GV =0. (62)
To get the shock amplitude V., we set the boundary conditions V = V. and dV /dy = d?V /dx? = 0
as y » —oo in Eq. (52). Then, we obtain

2U
Vv, = 7". (63)
Equation (62) is a standard type of differential equation, and the procedure for solving it goes as
follows: Look for solutions of the form V'(y) = exp(4y) where A is a constant, by substituting this
solution into Eq. (62), we obtain that A must satisfy the characteristic equation

R U
2 _ -0 _ 64
y) GA += 0, (64)
which has the solutions
R 1
Mo =5z ﬁ,/RZ — 4U,G, (65)

where A, and A, may be either real, or complex conjugates depending on the sign of (R? — 4GU,).
Here, we consider only the limiting case when (R? — 4GU,) < 0, A;, = (R/2G) + iA are complex
conjugates, where A = \/(4GU, — R2)/2G is a real number and i = v—1. The general complex
solution then becomes:
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V' = exp (5 2) [C: exp(ing) + C exp(~inp)], (66)

where C; and C, are complex constants, which are complex. We put C; = Ce'™/2 and C, =
Ce™'* /2, where C = 2|C,|. Then, the solution (66) reduces to the alternative form

R
V' = Cexp (ﬁ){) cos(Ay + w). (67)
Thus, the oscillatory shock wave solution is
2U, R
=— — A : 68
|4 0 +Cexp(2G)(>cos( X+ W (68)

where C and u are real arbitrary constants with € > 0 and u is the phase angle.

5. Results and Discussion

In this section, we have examined the nonlinear propagation characteristics of the MA solitary and
shock waves in a quantum mgnato-plasma model containing ions, and degenerate electrons and
positrons taking into account the spin-1/2 and exchange-correlation effects. In the dense
astrophysical objects such as neutron stars and white dwarfs, used in the following numerical
illustration, are chosen as follows [30-32]: n,o = (1 —2) x 103*m™3, B, = (0.1 —1) x 107T,
p =0.3—0.7and n;, = (1 — p)n,.o. As we mentioned in Sect. 4, if the dissipation is negligible,
the MA solitary waves will appear in the medium due to the balance between dispersive and
nonlinear terms. On the other hand, the MA shock waves (both monotonic and oscillatory types)
appear in the system as a result of dissipative due to the dynamic viscosity. Figure 1 shows the
monotonic shock solution given by Eq.(61) for different values of positrons concentration (via the
parameter p). It is noticed from this figure that the increase in the value of p leads to increasing the
magnitude of the amplitude of monotonic shock waves. Physically, this means that the increase in
the positrons concentration leads to a decrease in the nonlinearity coefficient, which in turn leads to
an increase in the amplitude of monotonic shock U,/Q. The effect of external the magnetic field(via
B,) on the monotonic shock profile of the MA waves is shown in Fig. 2. It is noticed that by
increasing the value of the magnetic field strength, the amplitude of monotonic shock waves
increases.
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Figure 1: The magnetoacoustic shock waves against y for different values of p with n,, = 103%, B, = 0.6 X 10" T,
o = 0.02,7 = 0.59, @ = 0.015 and U, = 0.5.
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Figure 2: The magnetoacoustic shock waves against y for different values of B, with n,, = 1034, 5, = 0.02, p = 0.6,
y =0.59, a = 0.015 and U, = 0.5.

Figure.3 displays the effect of the normalized viscosity coefficient n, on the MA shock structures in
the absence of dispersion effects (i.e. when the dispersion coefficient G — 0). It is found from this
figure that the higher viscosity leads to wider monotonic shocks while its amplitudes are
approximately stable. In fact, only normalized widths of the monotonic shock waves are dependent
on the normalized viscosity coefficient n, via the dissipation coefficient R as shown in shock
solution to Burger’s equation given by Eq. (61). This suggests that measuring the thickness of
shocks in a plasma may be a possible method of determining the viscosity of the plasma.
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Figure 3: The magnetoacoustic shock waves against y, for different values of nyusing Eq. (61), with n,, = 103*, B, =
0.6 x10” T,p = 0.3,y = 0.59, a = 0.015 and U, = 0.5.

Figure 4 shows the monotonic shock waves of the MA waves predicted by the two models, namely,
with the inclusion of the exchange-correlation effects (solid curve) and without exchange-
correlation effects (dashed curve). For the typical quantum plasma parameters we have used, there
is a significant difference in both the amplitude and width of the shocks between the two models. It
is observed that the exchange-correlation effects lead to a decrease in both the amplitude and the
width of monotonic shock waves. It is important to mention here that the exchange-correlation force
plays a dominating role of dispersion over the other quantum and pressure gradient forces, where
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the amplitude and width of the monotonic shock waves are inversely proportional with dispersion
coefficient.

0.14 T
_______ = = =v=0=0
012+ A —v=0.59, 0=0.015

A3
0.1 B \ N
0.08 _
V 5\
0.06 1 _

0.04

0.02}

0 L
-0.2 -0.1 0 0.1 0.2

Figure 4: The magnetoacoustic shock waves against x, with and without exchange-correlation effects, with with n, =
0.02, n,o = 1034, B, = 106 T, p = 0.6and U, = 0.5.

Now, it is interesting to investigate the dependence of the oscillatory shock wave structures of the
MA waves on the exchange-correlation effects, positrons concentration p, magnetic field strength
B,, electrons density n,,, and viscosity coefficient n,. Figure 5 shows the effects of the exchange-
correlation on the MA oscillatory shock waves. It is seen from Fig. 5 that in the presence of the
exchange-correlation, the amplitude of the oscillatory shock wave increases. This means that the
presence of the exchange-correlation in the system reduces the dissipation of energy in the system.
Figure 6 shows the effect of the presence of positrons in the system (via the parameter p) on the
oscillatory shock profile. It is clear from this figure that the amplitudes of the oscillatory shock
waves are found to be enhanced by the increase of p. Furthermore, Fig.7 indicates that the
amplitudes of the oscillatory shock waves are enhanced with the density of electrons n,,. The effect
of an external magnetic field on the profiles of the oscillatory shock waves is shown in Fig. 8. It is
seen from this figure that by increasing the values of magnetic field strength B,, decreasing the the
amplitudes of the oscillatory shock waves.
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Figure 5: The magnetoacoustic oscillatory shock waves against T with and without exchange-correlation effects, with
o = 0.002, nyy = 103* By = 10° T,y = 0.59, & = 0.015, p = 0.3 and U, = 0.5.
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Figure 6: The magnetoacoustic oscillatory shock waves against T for different values of p with n, = 0.002, n,, = 1034,

By =10°T,y = 0.59, a = 0.015 and U, = 0.5.

Finally, from the Fig. 9, we can see that the viscosity coefficient n, would lead to a reduce of the
amplitude of the oscillatory shock waves. For low values of n,, the dissipation of energy is fairly
slow leading to a more periodic shock wave. On further increase in the values of the viscosity
coefficient, the effect of dissipation gets enhanced in the system, and resulting in lesser periodic
shock wave in the system. However, when the dissipative effect is large enough, we have a
completely monotonic shock profile without any oscillation.
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Figure 7: The magnetoacoustic oscillatory shock waves against t for different values of n,, with n, = 0.002, p = 0.3,

By =10°T,y = 0.59, « = 0.015 and U, = 0.5.
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Figure 8: The magnetoacoustic oscillatory shock waves against t for different values of B, with n, = 0.002, p = 0.3,
Ngo = 103*m™3,y = 0.59, @ = 0.015 and U, = 0.5.
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Figure 9: The magnetoacoustic oscillatory shock waves against 7 for different values of n,, with p = 0.3, n., =
103 m™3,B, = 106 T,y = 0.59, & = 0.015 and U, = 0.5,

6. Conclusion

we have investigated the low frequency MA waves in magnetized quantum electrons-positrons-
ions plasmas using the QMHD theory, including the contributions of exchange-correlation in the
presence of electrons/positrons spin effects as well as the contribution of ions viscosity in the
system. The KdVB equation is derived using the reductive perturbation technique. The analytical
solusions of the KdVB are obtained as well. It is found that the quantum magneto-plasma system
under consideration supports both the MA solitary wave and the MA shock waves depending on the
values of the plasma parameters The necessary condition for the existence of the oscillatory and
monotonic shock waves are discussed as well. It is also found that the amplitude and width of the
monotonic shock waves increases with increasing the magnetic field strength B, and positron
concentration (vai the parameter p) while. the presence of exchange-correlation effect leads to a
decrease in the both width and amplitude of the monotonic shock waves. Futher, it is found that the
monotonic shock waves become wider due to the increase in the viscosity coefficient n, whereas
increasing the viscosity coefficient would lead to a reduce of the amplitude of the oscillatory shock
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waves. The results of the current investigation coud have a role in understanding dense magneto-
plasma situations such as astrophysical plasma where the quantum mechanical effects of electrons
and positrons are included to describe the dense astrophysical plasma systems.
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