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Abstract

The propagation and collision of dust acoustic (DA) multi-solitons in a four component dusty plasma
which consists of negatively and positively charged cold dust fluids, Boltzmann distributed electrons and
ions have been studied in the presence of a polarization force acting on dust grains. Using the reductive
perturbation technique (RPT), the Korteweged-de Vries (KdV) equation is derived. By using the Hirota
bilinear method, the two-and three-soliton solutions of the obtained KdV equation have been successfully
obtained. Phase shifts of the two-soliton and three-soliton have been deduced. It has been found that both
compressive and rarefactive solitons exist in current dusty plasma model. The polarization force plays a
significant role in the overtaking collision process of two-soliton and three-soliton, in such a way that the
amplitude of the compressive (rarefactive) solitons decreases (increases) as polarization force increases. It
was also found that the phase shifts are significantly affected by the dusty plasma parameters such as the
dust charge number ratio, ion-to-electron temperature ratio, negative-to-positive dust mass ratio, the ratio
of the densities of electrons to ions and the polarization force parameter.
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1. Introduction

Nowadays, dusty plasma physics covers a wide spectrum of applications because of its
importance in industrial plasma applications, in laboratory plasmas as well as astrophysical plasmas
[1-4]. A dusty plasma is an usual electron-ion plasma with an additional charged component of
massive dust grains [5]. The dynamics of dusty plasmas is very different from that of the usual
electron-ion plasma. The existence of the charged dust grains in plasma can modify the collective
behaviour of a plasma, as well as excite new modes and new nonlinear phenomena, such as dust
ions acoustic waves [6] and dust acoustic waves [7, 8]. The dust acoustic (DA) wave is a very low
frequency, longitudinal wave in which the wave is supported by the inertia of the dust grains, with
the restoring force being provided by the pressure of both the electrons and ions. It is a sound wave
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propagating through the charged dust fluid, involving oscillations of the heavy dust grains. The
existence of the DA wave was first theoretically investigated in the early 1990s by Rao, et al. [7],
and later experimentally observed by Barkan et al. [8], who were able to produce fascinating images
and real-time videos of the propagation of DA waves due to their low phase velocity and the large
size of the dust grains.

It is important to note that the charged dust grains embedded in a plasma are subject to several
forces acting on them. Probably, the most important one is the electrostatic force caused by
separation of charges in the plasma. Another force acting on the dust grain is the polarization force
which is due to the deformation of the Debye sheath around the dust grain in the background of
non-uniform plasmas [9, 10]. Khrapak et al. [11] have investigated the effect of the polarization
force on the propagation of the DA solitary waves. During the past years, a series of theoretical
studies has been performed to investigate the propagation characteristics of the DA waves in the
presence of the polarization force acting on dust grains in a background of non-uniform plasmas
[12-16]. Most of these investigations have been published by assuming negatively charged massive
dust grains due to the collection of electrons from background of plasma species. But there is direct
evidence for the co-existence of both positively and negatively charged dust particles in different
regions of space plasmas such as, the Earth’s mesosphere [17], cometary tails [18], Jupiter’s
magnetospheres [19] and laboratory devices [20]. Recently, El-Taibany et al. [21] have studied the
effects of polarization force on the electrostatic solitary waves. But they have ignored the effects of
polarization force on the positive dust.

However, a dusty plasma medium with dispersive and nonlinearity properties, assists the
formation of the associated nonlinear structures such as dust-acoustic solitary waves or solitons,
which arise due to a balance between nonlinear effects and dispersion. Solitons are a particular type
of solitary waves which maintain their shape and speed after interactions and have been extensively
studied in mathematics and physics in the framework of the Korteweg-de Vries (KdV) equation.

Nowadays, solitons and their interactions are the most important nonlinear phenomenon in
different plasma environments [22, 23]. Zabusky and Kruskal [24] numerically examined the
nonlinear interaction of a large solitary-wave overtaking a smaller one. It was found that, after
interaction, the solitary waves retained their original shapes, the only effect of the collision being a
phase shift. Due to this special property, amongst others, the solitary-wave solution of the KdV
equation is termed a soliton. Gardner et al. [25] showed that the KdV equation can be solved
exactly using the inverse-scattering transform. Inverse scattering shows that the collision of the the
KdV solitons is elastic, because the solitons retain their shapes after an interaction and no dispersive
radiation is generated as a result of a collision. In addition, there is a very useful and efficient
method for the determination of multiple soliton solutions of the KdV equation. This is known as
the Hirota bilinear method [26]. It is a direct method to obtain exact solutions for a wide class of
nonlinear evolution equations in the nonlinear science. Roy et al. [27] investigated the propagation
of the ion acoustic two-soliton interaction in a three component collision-less unmagnetized plasma
in the framework of the KdV equation. Applying the Hirota bilinear method, they derived two-
soliton and corresponding phase shifts. Saha and Chatterjee [28] studied the propagation and
interaction of the DA multi-soliton in a four component dusty plasma which consists of negatively
and positively charged cold dust fluids, g-nonextensive electrons and ions. Using the Hirota bilinear
method in the frameworks of the KdV equation, they obtained a two-soliton and three-soliton
solutions of the KdV equation. They investigated corresponding phase shifts of the two-soliton and
three-soliton as well. Recently, Khaled et al. [29] presented a theoretical model for the DA solitons
in an opposite polarity dusty plasma system which consists of negatively and positively charged
cold dust fluids, Boltzmann electrons and ions, including a generalized polarization force effect.
They derived the KdV equation for this system by using the reductive perturbation method.
Therefore in the present work, we extend the dusty plasma model of Khaled et al. [29] to study the
overtaking collision and corresponding phase shifts of the DA two- soliton and three-soliton in the
frameworks of the KdV equation by using the Hirota’s bilinear method. We want to investigate the
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effects of the polarization force and the other dusty plasma parameters on the phase shifts and the
formation of the two-soliton and three-soliton.

The paper is organized as follows: The theoretical model containing the basic equations
governing our dusty plasma system is described in Sect. 2. In Sect.3, we obtain the KdV equation
for our model. The multi-soliton solutions of the KdV equation are given in Sect. 4. In Sect. 5, we
obtain the Behaviour of soliton collisions and phase shifts. Numerical results and discussion are
presented in Sect.6. Sect. 7 is kept for conclusions.

2. Theoretical Method

We consider a collisionless, unmagnetized four-component dusty plasma consisting of
negatively and positively charged cold dust fluids, and inertialess electrons and positive ions in the
presence of a polarization force acting on massive charged dust grains. In a low frequency
phenomena in the regime where dust dynamics is important, the inertia of the electrons and ions is
assumed to be neglected and can be described by Boltzmann distribution. Thus, the number
densities for electrons (12,) and ions ( ;) can be given, respectively, by

ep
Ng = NggeXp (m), 1)
ep
n; = Njpexp (—m); 2
L

where n_q(n;,) is the equilibrium number density of electrons (ions), ¢ is the electrostatic potential.

When the electrons and ions are considered to be Bolzmannian, the polarization force acting on a
dust grain can be written as [9, 10]

_ Qi Vi
Fp= 8mey 1) (3)
where @ is the grain charge and 1 is the linearized Debye radius and can be expressed as:
Ay = [ CokpTiTe ]”2 (4)
b ez(niTe +neTi)

Normalized A, by Ap, and assuming that the potential perturbation is sufficiently small i.e.,

o < kgT./e, kgT;/e, we rewrite the linearized Debye radius A, as (see Ref. [29] for more details)
-1/2

e e \2
#o = oo Il Tn (kﬁf) T (k;;) l : ©)
L L

wheredp, = [eokpT;To/e2(nioT, + oo T2, a; = (1—pa?)/(1+ po;) and
ar, = (1+po?)/2(1 + po;) with p = n.o/ny, is the electron-to-ion number density ratio at
equilibrium. Substituting Eq. (5) into Eg. (3), and after some algebraic calculations, we finally
obtain the following expression of the polarization force [29]

e
Fp, =—eZzRa, (l-l-ngq;)an, (6)
BLi
where P, = (ai —4a,)/2ay; and R =Zze?/lémekgTiApy represent the effects of the
polarization force. It is obvious from expression (6) that the polarization force is independent of the
polarity of the dust grains, i.e. the polarization force will always be of the same nature whether the
charge is positive or negative and it is always in the direction of decreasing Debye length.

Accordingly, the basic fluid equations (i.e. the continuity, the momentum and the Poisson
equation) for negative and positive dust components, with the inclusion of the generalized
polarization force in the dust momentum equations can be written as, respectively,

a
S o () =0, O
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%“na@?:ij%_ﬁp(l Pﬂkﬁ;)z_i’ (8)
T+ () =0, ®
?a?ﬂpaatp: _i:%_%ZP(HP" ;ﬂ)z—fr (10)
ZZTf = E_Z (ne + Zony, — Zpny —ni), (11)

where n,(n,), un(u,), and m,(m,) are the density, the velocity, and mass, of the negatively
(positively) charged dust grains, respectively. Here P = Ra, and Z = Z, / Z,, is the ratio of positive-
to-negative dust charge number with Z,(Z,) is the number of charges residing on the positive
(negative) dust grain surface. At equilibrium, the quasi-neutrality condition requires
ZyMpg + Ny = ZyNyg + Ny, Where npg (ny,e) is the equilibrium number density of positively
(negatively) charged dust grains.

For notational clarity, we normalize the dynamic variables appearing in Egs. (7)-(11) as
follow: N, =np,/n.g Np = np/Npo, U, = un/Cpp, Up = up/Cpp and ¢ = e@/kpT; Where
Can = (Z,kgT;/m,)*? being the sound speed of the negatively charged dust. The time ¢ and space
x variables are normalized as T = twpy, and X = x/Ap,Where wy, = (nnoZ2e%/eym,)*? is the
plasma frequency of the negatively charged dust and Ap,, = (eoksTi/NnoZne2) /2 is Debye length
of the negatively charged dust. Thus, Egs. (7)-(11) becomes

%Jr%(wnvn) 0, (12)

%+ n%:j—;ﬁ—m +P0¢)3_§: (13)
Tt o (Mu,) =0 a9

'Zi;+ p%z— g—ﬁ—mu +Pu¢)3—§, (15)
S%‘f = pte exp(0y¢) — p;exp(—¢) + Ny, — BN, (16)

where p = mn/mp’ e = Ngo/ ZnNng, He = Moo/ ZnNng @Nd B = 1+ p, — p;.

For simplicity, we may also expand the exponential functions in the normalized Poisson’s
equation (16) up to second order in ¢. With using this expansion, Poisson’s equation is simplified
to
9%¢ 2 3
a3z = Wa = D+ B(1=Np) + Higp + Ho¢? + 0(9%), (17)
where the coefficients H, and H, are calculated to be H; = p.0; + p;, and Hy = (u.0f — p;)/2.
3. Kortewg-De Vries (KdV) Equation

Since we are dealing with a weakly nonlinear theory for the small but finite amplitude DA
waves, we employ the reductive perturbation method [30] to derive the K-dV equation. So, at first,
we introduce the space and time stretched coordinates as

§=eV2(X—-1T), T=¢€¥T, (18)
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where e is a smallness parameter characterizing the strength of the nonlinearity and V,is the

normalized linear phase velocity of the DA wave. Then, we expand the dynamical quantities of the
system about their equilibrium values in power series of € as:

/- \P(Q} + E\{J'El]' + EZ\P‘(Z} + e, (19)
where ¥ = (N,,, U,, N,, U,, ¢)and ¥©@ = (1, 0,1,0,0).

Substituting equations (18) and (19) into equations (12)-(17) and collecting the terms in
different powers of e, we get the following equations for lowest order

(1)
U (1—P)
a_"n _ (1) 20
&8)]
N — Uy~ _nz(1+2P) PRe (21)
Ny = BNY + i) = 0. (22)
From these equations we get the linear phase velocity relation of solitons as
jl +uZB —P(1 —uB2?) 23)
V{J - H .
1

It is obvious from Eq. (23) that the value of V, decreases with the increasing values of P i.e., the

polarization force effect causes a decrease of the wave phase velocity. This effect becomes more
and more important for larger dust grains.

The next-order in e gives another set of coupled equations. Solving these equations with the
aid of Egs. (20)-(22), we finally obtain the well-known KdV equation as

@ @ e
¢ }ag} a;—;s o (24)

where the coefficients of nonlinearity (4) and dispersion (B) appearing in the K-dV equation are
given by

= Sns [3Bu2Z%(1 + ZP)? —3(1 — P)? 4+ PPy (BuZ* — 1)V — 2H, V],
1%p

and
Vo

B=—,
2H,

4. Multi-Soliton Solutions of KdV Equation

In order to examine the collision of a multi-soliton in the framework of a KdV equation (24),
we employ the Hirota bilinear method. We first use the transformation: & = C3/B,
pM(E, 1) = 63YBA™W({, 1), and 7 =1 to convert the KdV equation.(24) to its standard form.
Then we get

N ay 3y o5
E+6¢a—<+a—§3_0. (25)

Note that the standard KdV equation (25) can have multi-soliton solutions describing the

dynamics of interactions (collisions) of the multi-soliton. The solution of the standard KdV equation
(25) can be expressed by
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? FF —F (26)
lf"((;T) =2 azz lnF(z T) 2 (T)J
where the function F({, ) is chosen to have a perturbation expansion form, defined as
F((,7) =1+€f1({,T) +€2/({,1) +2/((, 1) + -, (27)

where ¢ is a non-small formal expansion parameter. The unknown functions f;({, 1), f5({, 1), ... can
be determined later. Substituting Eg. (26) into a standard KdV equation (25), integrating once and
setting the integration constant equal to zero, allows us to replace (25) by

2 _
FFo — Foby + Fleggq — 4FgecFp + 3k = 0. (28)
This equation is a quadratic equation in F({,t) (Hirota usually refers to this as a bilinear equation).
Using the Hirota bilinear-D operator notation, equation (28) can be written as
B(F.F) = (D; D, + D{) (F.F) =0. (29)

In order to obtain the Multi-Soliton solutions of a KdV equation, we solve the bilinear equation of
the KdV equation.  Substituting Eq. (27) into Eq. (29) and equating to zero the powers of &, yields

0(e%): B(1-1)=0, (30a)

o(eb): B(1-fi+f-1)=0, (30b)

0(e?): BA-fo+fi-fi+fz-1)=0, (30c)

o(ed): BA-fs+f1 fa2+f2-f1+f3-1)=0, (30d)

o(en): B (Z [m 'fn—m) =0, (306)

m=0
where f, = 1,and B = D; D; + D{. From equation (30d) we obtain

a? a* 31

(agar ag) ZZ B fom), (31)

Equation (31) must be solved recursively to fmd F((,7)withn=1,23, ..
From Eq. (31), whenn =1,n = 2,n = 3 we have

92 a4
32
(3(61’ g)fl_ » ( a)
92 a4
(ﬁ act ) = B(fl f1), (32b)
92 a4
(aga a() - B(fl fZ (32C)
92 a4
(3{8’: act ) = __B(fl fsth-fitfa f) (32d)
Here, f,({,7) is assumed to be
N
QD = exp(3), (39

i=1
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where 9; = k;{ + w;1, k; IS the wave number and w; is the frequency. Substituting Eq. (33) into
Eq. (32a) we have w; = —k.

4.1. Two-soliton Solutions

To determine the two-soliton solutions of Eq. (25), we choose N = 2 in Eq. (33), and then
f1((,T) = exp(I,) + exp(I,) with ¥; = k;{ + w;T+ é’fﬂ}, 5{.{03 is a constant represents the initial
phases of solitons, i = 1,2 . Substituting f, (¢, ) into equation (32b) we have

a2 a*
(5531 + @)fz = 3kyky(ky — ky)?exp(9; + 9,). (34)

Therefore, we assume f, = a,,exp(¥; + ¥,) is a solution of Eq. (34) where a, is a coupling
constant yet to be determined. Substituting this formula (i.e., f; ) into Eq. (34), and solved for the
coupling constant a,, in the terms of wave numbers k, and k., we get

2
gy = M (35)
(k1 + k)2
which is determines the phase shifts of the respective solitons after overtaking collision (note that
k, = k, ). Now we substitute the solutions of f; and £, into Eq. (32d) we see that, f; = 0. Thus,
without loss of generality we have set ¢ = 1, the perturbation series expansion (27) becomes
F({,t) = 1+ exp(P,) + exp(¥,) + azexp(d; + 7,), (36)
which is the two-soliton bilinear solution for the stander KdV equation (25). Now, Substituting Eq.
(36) into Eq. (26), the two soliton solution of the standard KdV equation (25) is given by
2
P = [1+ e% + e + a,,e®1+62)]2 [kie® + kie® + ajy(kie® +kie® )ePate) (37)
+ 2(key — ky)2e@to2)],

Hence, the two-soliton solution of the KdV equation (24) is given by

12 B3
Al1+ ef: +e% + ay,e(f1t62)]2
+ 2(ky — kz)ze(glwz}],
where 8; = kI—B‘%f - kfr+51.{°}, i =1,2. Thus, for KdV equation (24), Eg. (26) can be rewritten
as

P = [lZe®: + k3e® + ay,(k3e®t + kje®z)e(f1782) (38)

12B 92
@ _e2 9 (39)
PP ED =55 fED),
where f (&, 1) for two-soliton solution is given by
f(&E,1) =1+ exp(8,) + exp(6,) + ay,exp(6; + 6,), (40)

which represents the solution of the two-soliton bilinear form of the KdV equation (24) where

6, = le‘%f —kit+ Ef“}, and 6, = k28‘§{ — k3t + 52@. We note that the two-soliton KdV

solution (24) can be represented in a number of equivalent forms emphasizing different aspects of
the soliton interaction dynamics.

4.2. Three-soliton Solutions

To obtain the three-soliton solutions of the KdV equation, we follow the same way as above
by setting N =3 in Eq. (33) to get f; = exp(¥,) + exp(¥¥,) + exp(F3), and after algebraical
calculations, the three-soliton bilinear solutions for the standerd KdV equation (25) is:

(41
F(,1) = 1+ e + €% + &% 4 byye@t%) 4 b3e®179%) 4 hyye(%t) 4 by e®uttatds) 7y
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where the coefficients by, by3, bo3 and by, are given by
b _ (kl _ kz)z _ (kl _ k3)2 _ (kz _ k3)2
12 (kl _I_kz)zJ 13 U{3 +k3)2, 23 (kz +!‘{3)2’
and
ky — k)2 (hey — k3)?(ky — k3)?
b123 :b12b13b23 ( 1 2) ( 1 3) ( 2 3)

(kg + k)2 (g + Fe) 2y + )™
Therefore, the three-soliton solutions of the KdV equation (24) can be written in the form

B 9*

P (&, 1) = % e Ing(&,1), (42)

where the function g (&, ) is obtained as

GET) =1+ +eb% +e% + by,e1+02) 1 b eB146:) | | (8246) | | . o(61+6:485)  (43)
where 6; = k;B 38 — k3t + 6, i = 1,2,3.

5. Behavior of Soliton Collisions and Phase Shifts

It is noted that there is no amplitude (or velocity) change upon multi-soliton interactions
associated with the KdV equation. In other words the interaction is elastic and the only effect of the
interaction is a phase shift. In this section we study the behavior of the two solitons interactions of
the KdV equation when t — +oo, and we derive the formula for the phase shift of the fast-moving
and slow-moving soliton, and hence we are generalized this idea on three-soliton interactions.

Now, to obtain the phase shifts due to the interaction of the two-soliton, we introduce the
1
transformation, ¥, = B73¢ — k. Then, 8, can be rewritten in terms of (y,,7) as

0, = k- (- kD + 8, i=12 (44)
If we consider that k, = k, = 0,and [ = 1 in Eq. (44), we get

0, = kyx,+69, (45)
0, = kolya — (k3 — ki)l + 52(0},
where we note that (k3 — k$) = 0. The frame of the first (slow) soliton, in which y, is fixed, and
8, remains finite, we take the limits cases as T — +co.
Whenever t — —o0, 8, — +00, and therefore Eq. (40) leads to

f(&, 1) =~ exp(8,)[1 + exp(6; +Inay,)]. (46)

Substituting Eq. (46) into Eq. (39), carrying out some algebraic calculations, the solution of
Eq. (24) is given by

1285 kZefitma:  3p3k2
] 1 (1 n 3914'111 a1z )2 = A sech [E (91 + In alz):|, (47)
where we put a;, = e'™ %12 in the Eq. (46), and using the identity sech?(x/2) = 4e*/(1 + e*)? in
the Eq. (47). However, it is appropriate to re-write Eq. (47) in the form

k
dV ~ ¢y, sech? [2811 (.f — B%kfr + ﬂ_)l, (48)
3

where ¢gq (: SBékf,f‘A) is the amplitude of the first (slow) soliton and A_ = Biln a2 /ky is the
phase change of it.
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Now, we consider the case when 7 — +co. In this case, we have 8, — —oo, and hence
e®2z — 0. Therefore Eq. (40) converts to

fE 1) ~ 1+ exp(6,). (49)

Similarly, using this formula in Eq. (39) we have by direct calculation

k
¢ ~ ¢y sech? l—ll (f - B%kfr)l. (50)
2B=
From Egs. (48) and (50) we see that, after the collision of the two-soliton, the asymptotic
trajectory of the slow soliton is shifted backward by a phase shift equal to
B3 ki —k,

Ay =0-4 =2 In LTk

where the minus sign indicates the backward shift.

(51)

r

On the other hand, to obtain the phase shift of the second (fast) soliton after collision with
first (slow) soliton, we choose I = 2, then from Eq. (44) we get

0, = kylxs+ (k2 — k2T + 6, ky>ky >0,

i

(52)
0, = kyyr + 6.

Similarly, in the frame of the fast (second) soliton, we take the limits as T — +co where y,
fixed, and @, remains finite. Then as t — —oo, 8, — —oo, and from Eq. (40) we have

f~1+exp(6;), (53)
whereas for t — 400, Eq. (52) gives 8, — 4, hence e®1 — +oo. Then, Eq. (40) reduced to
f =~ exp(6;)[1 + exp(6; + Inay;)]. (54)

Thus from Eqg. (39) the two-soliton solution of Eq. (24) is given, in either limit, 7 — +oo, by

ka

dV ~ ¢y,sech? l
2

(¢-Bsuge+ ai)l, (55)

where ¢35 (: SB%kg,f‘A) is the amplitude of second soliton and A, (= A;, A_) is the shift of the
trajectory of the second (fast) soliton due to its interaction with the first (slow) soliton. Here,

A= Biln a2 /ky for T = +oo, and A_= 0 for ¢ - —oo. From the above formulae we see that the
asymptotic trajectory of the fast soliton is shifted forward by the phase shift
BY3 1ky —k;

A=A, —A =2—1
2= 5 [P

1
E]

: (56)

It is seen that the phase shifts A,, and A, are of opposite signs and both of them are
proportional to Bé; subsequently the phase shifts will also depend on the dusty plasma parameters.

For the three-soliton interactions, it is easy to see that the phase shift of the first soliton (i=1)
due to the other solitons is defined by
BY3 | /ky —Iky\ (ki — k
6, =2 | (25 (o)
ky ky+ky/ \ky+ ks
and the phase shifts of the second and third solitons respectively are given by

, (57)
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BY3 | k, — ky ky — ks
_ _ 58
8 =2 ln‘(k2+k3) ln‘(ﬁc1+k2)’ (58)
BY3 kg — ka3\ sky — k3
— 59
8 =2 ln‘(k1+k3)(k2+k3)’ (59)

where k3 > k, > k, > 0. It is clear that the phase shifts are functions of the dispersion coefficient
(B) and consequently function of the polarization parameter as well as other plasma parameters.

6. Results and Discussion

The propagation and interaction of the DA solitons in an unmagnetized collisionless dusty
plasma containing inertial negatively as well as positively charged dust cold, and thermal ions and
electrons are investigated. The reductive perturbation technique is employed in order to derive the
KdV equation which is appropriate for describing the DA solitons propagation. The Hirota bilinear
method is used to study the overtaking collision of multi-soliton solutions. Figure 1 shows the time
evaluation of the interaction between two compressive DA solitons (¢¥ vs &) moving in the same
direction from left to right with the faster (taller) soliton overtaking the slower (shorter) soliton. It is
observed that, at the initial time t = —6, the faster (taller) soliton with large amplitude is located
behind the slower (shorter) one (which has the smaller amplitude). As we evolve in time, the taller
soliton will catch up the shorter one and they collide with each other. For T = 0, the two solitons
merge together into a single hump profile (become a single soliton) with amplitude is equal to the
difference between the amplitudes of the two solitons before its interaction. After finite time, a large
soliton overtakes a small one and after time t = 6, they regain their original shapes. The only
noticeable change due to the interaction of the two solitons is a phase shift from where the wave
would have been if there was no interaction.

The combined profile of the compressive two-soliton interaction is presented in Figs. 2(a) and
2(b) where Fig. 2(a) is plotted without polarization force effect (i.e., when R = 0) while Fig. 2(b) is
plotted with polarization force. From these figures, we can see that there is a shift in the solitons due
to an elastic collision and the nonlinear interaction, this shift is called the phase shift. The phase
shift is particularly large for the small amplitude soliton. The larger amplitude soliton shifted
forward whereas the smaller one shifted backward due to the collision. It is also observed that, the
polarization force leads to reduce the amplitudes of both larger and smaller solitons.

/\T/i\
-G o 10
T =0
o 10 A0 a-{, 10
| '2/\/\
IZIE 10 =z -1 ﬁé 10
4 Tr = 6
/\J\ "
o; 10 F = =

138

.-|
[ -
|
[
%
O M _k & ® 8 n b @ @O0 KN & & @

=]
&

=10

r =

-10
r =

Mok b T@ @O M B D BYE N B B0 s o0 o
g
|
M b B @R

[=]
A
[=
Al
[=
[=
=k
o
[
=]

] =10



J. Amr. Uni. 01 (2021) p. 129 Mahmood A. H. Khaled et al

Figure 1: Compressive two-soliton profile for various T, with £ = 0.2 k; = 0.8 k; = 1.6 R = 0.5 u; = 0.6
He = 0'3, o; =03 and# =5,

()

o
10 20 £

Figure 2: The interaction profile of the compressive two-solitons and its contour plots. (a) without polarization force
effect (8 = 0), and (b) with polarization force effect (# = 0.5) and for £ = 0.2 k; = 1 k; = 1.5 p; = 0.7,
He = 0.3, a; = 0.2, and 4 =95,

To clarify more, Fig. 3 shows a plot of the superimposition of the lines of the asymptotic
trajectories of the slow and fast solitons on the contour plot of the two-soliton solutions. It is found
that the asymptotic trajectory of the slow-moving soliton is shifted backward by a phase shift equals

to —2 VB In|\/ay;|/ k4 (the minus sign indicates the backward shift.), and the asymptotic trajectory
of the fast-moving soliton is shifted forward by a phase shift equals to 2 ¥/B Inly/a;;|/k,. The line
of asymptotic trajectories passes through the middle of the slow and fast moving solitons both in the
infinite past and future in time, which shows that the analytic computation is correct. Comparison

of Fig. 3(a) and Fig. 3(b) demonstrates that the polarization force has a significant effect on the
phase shift and the asymptotic trajectories of both solitons.

10 10
5 5

T T
0 0

[ —~ - J 10
0 -10 0 10 20 -20 -10 0{ 10 20

§
Figure 3: Superimposition of the trajectories on contour plot of the compressive two-soliton. (a) Without polarization
force effect (& = ©). and (b) with polarization force effect ( # = ©.5) and for £ = 0.2 ky =1 k; = 1.5
pH; = 0.7, K, = 0.3, a; = 0.2, and 4 = 5.
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Figure 4: Rarefactive two-soliton profile for different values of =, with £ = 0.02 and with same values of other
parameters as Fig. 1.

On the other hand, the time evaluation of the interaction of rarefactive two solitons is
displayed in Fig. 4 when Z = 0.01. Similarly, we can see that at 1 = —6, the taller soliton is
behind the smaller one, and when t = —2, the taller soliton is getting closer to the shorter one. The
two solitons merge and become one soliton at T = 0. But after certain time T = 2, they separate

from each other, and then finally they depart from each other when 7 = 6.

10

Figure 5: The interaction profile of the compressive two-solitons and its contour plots. (a) without polarization force
effect (®# = ©9), and (b) with polarization force effect (£ = ©0.5) and for Z = 0.2 ks =1 ko = 1.5 p, = 0.7,
He = 0.3, g; = 0.2, and# = 5,

The combined profile of the rarefactive two-soliton collision is presented in Figs. 5 (a) and 5
(b) without and with polarization force effect, respectively. As it clear from these figures, the
smaller soliton is retarded in time whereas the larger one is pushed forward. Figure 5(b) depicts that
the presence of the polarization force leads to an increase in the amplitudes of both larger and
smaller solitons. Clearly, the modification in the phase shift due to the presence of the polarization
force is also visible in Fig. 5(b). Also, Figs 6(a) and 6(b) show a plot of the superimposition of the
lines of the asymptotic trajectories of the slow soliton and fast soliton on the contour plot of the
rarefactive two-soliton collision in the absence of the polarization force [Fig. 6(a)] and in the
presence of the polarization force [Fig. 6(b)]. From these figures, we can also see that the line of
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asymptotic trajectories passes through the middle of the slow and fast moving solitons both in the
infinite past and future in time. It is found also from figure 6 that, the asymptotic trajectory of the

slow soliton is shifted backward by a phase shift equals to —2 ¥/B Inly/a;|/k;, and the asymptotic
trajectory of the fast soliton is shifted forward by a phase shift equals to 2 /B In|\/a;|/k,. Due to
the presence of the polarization force, the lines of asymptotic trajectories of two solitons are shifted.

10

.13

Figure 6: Superimposition of the asymptotic trajectories on contour plot of the rarefactive two-soliton. (a) without
polarization force effect, and (b) with polarization force effect and for £ = 0.01 &; =1 &k, = 1.5 n; = 0.6,
He = 0.3, g; = 0.2, and 4 =5.

10 20

In Figs. 7 and.8, the time evolution of the interaction of both compressive and rarefactive
three-soliton profile respectively have been plotted with the plasma parameters: k, = 1, k;, = 1.5,
ks =2,R=0.6, uy; =0.7, u, = 0.3, o; = 0.2, and u = 5. From these figures, we have shown
that for t = —4 larger amplitude soliton is behind all other small amplitude solitons. When
T = —2, the three solitons merge and become one soliton at ¢ = 0. But, at T = 2, they separate
from each other, and then finally they depart from each other when 7 = 4.
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Figure 7: Compressive three-soliton profile for various 7, with k; =1, k, = 1.5, k3 =2 , R = 0.6, and other
parameters same as Fig. 1.
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Figure 8: Rarefactive three-soliton profile for different values of =, with = 0.01_ The other parameters as in Fig.1.
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Figure 9: The interaction profile of the compressive three-solitons and its contour plots. (a) without polarization force
effect (R = 0), and (b) with polarization force effect (z — 0.g). Other parameters are taken a £ = 0.2 ky = 1,
k, = 1.5’ My = O.T,Ju:g = 0.3’ o, = O.Z’andy. =5

Figure 9(a) shows an overtaking elastic collisions of three compressive solitons in (&, 7) plane
with its contour plot when R = 0 (i.e., without the polarization force). Figure 9(b) illustrates an
overtaking elastic collisions between three-soliton in (£, ) plane with its contour plot at R = 0.6
(i.e., when polarization force is considered). In Figs. 9(a) and 9(b), soliton with large amplitude
travels faster and catches the smaller one. After the collision, the three solitons remain their original
shapes and amplitudes expect for the phase shifts. Furthermore, in the presence of the polarization
force, the amplitude of the multi-soliton will decrease as depicted in Fig. 9(b). The phase shift is
also visible in Fig. 9 due to the interaction among the three solitons.
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Figure 10: The interaction profile of the rarefactive three-soliton and its contour plots. (a) without polarization force
effect (R = 0), and (b) with polarization force effect (R = 0.6). Other parameters are taken as £ = 0-01 k; =1
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The interaction profile among three rarefactive DA solitons propagates in the same direction
with their corresponding contour plots is shown in Fig. 10. One can clearly see that the soliton with
larger amplitude has a greater velocity than another with smaller amplitude. Consequently, as time
goes on, the larger soliton catches up with the smaller one and the collision occurs and the larger
soliton has overtaken the smaller one. From Figs. 10(a) and 10(b), it is noted that the amplitudes of
the rarefactive DA solitons in the presence of polarization force [Fig. 10(b)] are larger than those in
the absence of the polarization force [Fig. 10(a)]. Furthermore, we find that the change of trajectory
for each DA soliton is evident after interaction.

Figure 11 illustrates the variation of phase shift A, after the interaction of two solitons against
polarization force parameter R, for two different values of Z with k, =1,k, = 1.5,
o; =03, =07, u, = 0.3, u= 5. It is noticed that with an increase in the polarization force
parameter R, the phase shift decreases, but it is increasing with the increase of Z. The effect of the
polarization force on the phase shift is more pronounced for lower value of Z.
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Figure 11: The phase shift (21) after the overtaking interaction between two DA solitons versus the polarization force

parameter R for two different values of Z with ¥2 = 1 k2 = 1.5 o; = 0.3 p, =07 pu. =03 gndm = 5,

Figure 12: The phase shift (21) after the overtaking interaction between two DA solitons versus the polarization force
for different values of : when Z=0.2. Other parameters are ¥+ = 1 k> = 1.5 p; = 0.7 p. = 0.3 and# = 5,

In Figs. 12 and 13, we have presented the variation of phase shift A; against the polarization
parameter R with different values of the ion-to-electron temperature ratio a; in the cases of Z = 0.2
and Z = 0.01, respectively. As shown in Fig. 12, in the case of Z = 0.2, an increase of both the
polarization parameter R and o;, decreases the phase shift A;. However, in the case of Z = 0.01,
Fig. 4 indicates that, within the range of R < 0.8, the phase shift A, decreases as both of the
polarization parameter R and the ion temperature ratio g; increase, but in the range of R > 0.8, the
phase shift increases with the increase of o;. This means that the influence of the polarization force

decreases with increasing ion temperature. Figure 14 shows the dependence of the phase shift on
both of the electron-to-ion density ratio p and positive-to-negative dust ratio g. It turns out that the

phase shift A, decreases as the ion density p increases. But A; increases with the increase of .

o] 0.2 0.4 0.6 0.8 1
R

Figure 13: The phase shift ('1|l 1) after the overtaking interaction between two DA solitons versus the polarization force
for different values of 9t when Z=0.01. The other parameters as in Fig. 11.
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Figure 14: The phase shift (#41) after the overtaking interaction between two DA solitons versus 2 for different values
of # with %+ = 1 ks = 1.5 o, = 0.3 u; = 0.7 and 7=0.01.

Figure 15 indicates the variation of the phase shift 8§, with R for different values of Z after the
overtaking interaction between three solitons with k; = 1,k, = 1.5, k3 =2, 0, =0.2,u; = 0.7,
1. = 0.3, and u =5. As depicted in Fig. 14, the phase shift §, increases with the increase of Z, but it
decreases with the increase in R.

0 0.2 0.4 0.8 0.8 1
R

Figure 15: The phase shift (31) after the overtaking interaction between three DA solitons versus the polarization
force for different values of Z with k1 = 1 k> = 1.5 k3 =2 o0, =02 p; = 0.7 p, =03 gndu =5,

7. Conclusion

In this paper, we have studied the nature of the nonlinear propagation and interaction of two-
soliton and three-soliton solutions of the KdV equation (24) in an opposite polarity dusty plasma
consisting of negatively and positively charged cold dust fluids, Boltzmann velocity distributed
electrons and ions, including the generalized polarization force. The KdV equation (24) is
transformed into a standard KdV equation (25) by using a suitable transformation. By using the
Hirota’s bilinear method, the two-and three-soliton solutions for the KdV equation (24) have been
successfully obtained. Both compressive and rarefactive solitons are found to exist in the dusty
plasma. The large value of Z is found to yield compressive solitons and smaller Z is found to yield
rarefactive solitons. Plots of the solutions were made and it was shown that the solitons interact and
keep their forms after collision with one another. It has been observed that the soliton with large
amplitude travels faster and catches the smaller one. After the overtaking collision, the solitons
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retain their original shapes and amplitudes expect for the phase shifts. It was observed that the
larger amplitude soliton shifted forward while that of the smaller amplitude shifted backward as a
result of the phase shift.

It has been found that, the phase shifts are significantly affected by the polarization force
parameter R, number charge ratio Z, ion-to-electron temperature ratio o, positive-to-negative dust
mass ratio u, and the ratio of the densities of electrons to ions p. Finally, it is observed that the
polarization force gives a higher amplitude in the case of rarefactive solitons and gives a smaller
amplitude in the case of compressive solitons.
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