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Abstract 

The propagation and collision of dust acoustic (DA) multi-solitons in a four component dusty plasma 

which consists of negatively and positively charged cold dust fluids, Boltzmann distributed electrons and 

ions have been studied in the presence of a polarization force acting on dust grains. Using the reductive 

perturbation technique (RPT), the Korteweged-de Vries (KdV) equation is derived. By using the Hirota 

bilinear method, the two-and three-soliton solutions of the obtained KdV equation have been successfully 

obtained. Phase shifts of the two-soliton and three-soliton have been deduced. It has been found that both 

compressive and rarefactive solitons exist in current dusty plasma model.  The polarization force plays a 

significant role in the overtaking collision process of two-soliton and three-soliton, in such a way that the 

amplitude of the compressive (rarefactive) solitons decreases (increases) as polarization force increases. It 

was also found that the phase shifts are significantly affected by the dusty plasma parameters such as the 

dust charge number ratio, ion-to-electron temperature ratio, negative-to-positive dust mass ratio, the ratio 

of the densities of electrons to ions and the polarization force parameter. 

Keywords: Multi-soliton collisions, KdV equation, polarization force, Phase shift. 

من حبيبات غبار  غبارية مكونةصادم السوليتونات الصوتية الغبارية في بلازما في هذه البحث دراسة انتشار وت تم :الملخص
توزيع بولتزمان( وذلك في وجود تأثير قوة الاستقطاب  )تتبعسالبة الشحنة وأخرى موجبة الشحنة والكترونات وايونات حرارية 

دي فريس -معادلة كورتيفيكلاشتقاق على حبيبات الغبار السالبة والموجبة. تم استخدام تقنية الاضطراب المختزلة 
(Korteweged-de Vries (KdV) equation تم إيجاد الحلول متعددة السوليتونات لهذه .)نظرية  المعادلة باستخدام

Hirota bilinear  تم استنتاج إزاحات الطور الناتجة من تصادم الاجتياز بين سوليتونين وثلاثة سوليتونات متحركة بسرعات .
الاستقطاب لها دور رئيسي  وأن قوةوتخلخليه(  )تضاغطيةن خلال الدراسة وجدنا أن هناك نوعين من السوليتونات م مختلفة.

في عمليات تصادم الاجتياز بين السوليتونات سواء كانت تضاغطية أو تخلخليه بحيث تقلل من سعة السوليتونات التضاغطية 
أن إزاحة الطور تتأثر بشكل ملحوظ بواسطة بارامترات البلازما مثل نسبة  وتزيد من سعة السوليتونات التخلخليه. أيضا وجدنا

نسبة  الإلكترون،نسبة درجة حرارة الايون إلى  الايونات،نسبة كثافة الالكترونات إلى  السالب،عدد شحنات الغبار الموجب إلى 
 .وبارامتر الاستقطابكتلة حبيبة الغبار السالبة إلى الموجبة 

_____________________________________________________________________________ 
____________

1. Introduction  

Nowadays, dusty plasma physics covers a wide spectrum of applications because of its 

importance in industrial plasma applications, in laboratory plasmas as well as astrophysical plasmas 

[1-4]. A dusty plasma is an usual electron-ion plasma with an additional charged component of 

massive dust grains [5]. The dynamics of dusty plasmas is very different from that of the usual 

electron-ion plasma. The existence of the charged dust grains in plasma can modify the collective 

behaviour of a plasma, as well as excite new modes and new nonlinear phenomena, such as dust 

ions acoustic waves [6] and dust acoustic waves [7, 8]. The dust acoustic (DA) wave is a very low 

frequency, longitudinal wave in which the wave is supported by the inertia of the dust grains, with 

the restoring force being provided by the pressure of both the electrons and ions. It is a sound wave 
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propagating through the charged dust fluid, involving oscillations of the heavy dust grains. The 

existence of the DA wave was first theoretically investigated in the early 1990s by Rao, et al. [7], 

and later experimentally observed by Barkan et al. [8], who were able to produce fascinating images 

and real-time videos of the propagation of DA waves due to their low phase velocity and the large 

size of the dust grains. 

It is important to note that the charged dust grains embedded in a plasma are subject to several 

forces acting on them. Probably, the most important one is the electrostatic force caused by 

separation of charges in the plasma. Another force acting on the dust grain is the polarization force 

which is due to the deformation of the Debye sheath around the dust grain in the background of 

non-uniform plasmas [9, 10].  Khrapak et al. [11] have investigated the effect of the polarization 

force on the propagation of the DA solitary waves. During the past years, a series of theoretical 

studies has been performed to investigate the propagation characteristics of the DA waves in the 

presence of the polarization force acting on dust grains in a background of non-uniform plasmas 

[12-16]. Most of these investigations have been published by assuming negatively charged massive 

dust grains due to the collection of electrons from background of plasma species. But there is direct 

evidence for the co-existence of both positively and negatively charged dust particles in different 

regions of space plasmas such as, the Earth’s mesosphere [17], cometary tails [18], Jupiter’s 

magnetospheres [19] and laboratory devices [20]. Recently, El-Taibany et al. [21] have studied the 

effects of polarization force on the electrostatic solitary waves. But they have ignored the effects of 

polarization force on the positive dust.  

However, a dusty plasma medium with dispersive and nonlinearity properties, assists the 

formation of the associated nonlinear structures such as dust-acoustic solitary waves or solitons, 

which arise due to a balance between nonlinear effects and dispersion. Solitons are a particular type 

of solitary waves which maintain their shape and speed after interactions and have been extensively 

studied in mathematics and physics in the framework of the Korteweg-de Vries (KdV) equation.  

Nowadays, solitons and their interactions are the most important nonlinear phenomenon in 

different plasma environments [22, 23]. Zabusky and Kruskal [24] numerically examined the 

nonlinear interaction of a large solitary-wave overtaking a smaller one. It was found that, after 

interaction, the solitary waves retained their original shapes, the only effect of the collision being a 

phase shift. Due to this special property, amongst others, the solitary-wave solution of the KdV 

equation is termed a soliton. Gardner et al. [25] showed that the KdV equation can be solved 

exactly using the inverse-scattering transform. Inverse scattering shows that the collision of the the 

KdV solitons is elastic, because the solitons retain their shapes after an interaction and no dispersive 

radiation is generated as a result of a collision. In addition, there is a very useful and efficient 

method for the determination of multiple soliton solutions of the KdV equation. This is known as 

the Hirota bilinear method [26]. It is a direct method to obtain exact solutions for a wide class of 

nonlinear evolution equations in the nonlinear science. Roy et al. [27] investigated the propagation 

of the ion acoustic two-soliton interaction in a three component collision-less unmagnetized plasma 

in the framework of the KdV equation. Applying the Hirota bilinear method, they derived two-

soliton and corresponding phase shifts. Saha and Chatterjee [28] studied the propagation and 

interaction of the DA multi-soliton in a four component dusty plasma which consists of negatively 

and positively charged cold dust fluids, -nonextensive electrons and ions. Using the Hirota bilinear 

method in the frameworks of the KdV equation, they obtained a two-soliton and three-soliton 

solutions of the KdV equation. They investigated corresponding phase shifts of the two-soliton and 

three-soliton as well. Recently, Khaled et al. [29]  presented a theoretical model for the DA solitons 

in an opposite polarity dusty plasma system which consists of negatively and positively charged 

cold dust fluids, Boltzmann electrons and ions, including a generalized polarization force effect. 

They derived the KdV equation for this system by using the reductive perturbation method. 

Therefore in the present work, we extend the dusty plasma model of Khaled et al. [29] to study the 

overtaking collision and corresponding phase shifts of the DA two- soliton and three-soliton in the 

frameworks of the KdV equation by using the Hirota’s bilinear method. We want to investigate the 
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effects of the polarization force and the other dusty plasma parameters on the phase shifts and the 

formation of the two-soliton and three-soliton. 

The paper is organized as follows: The theoretical model containing the basic equations 

governing our dusty plasma system is described in Sect. 2. In Sect.3, we obtain the KdV equation 

for our model. The multi-soliton solutions of the KdV equation are given in Sect. 4. In Sect. 5, we 

obtain the Behaviour of soliton collisions and phase shifts. Numerical results and discussion are 

presented in Sect.6. Sect. 7 is kept for conclusions.  

2. Theoretical Method  

We consider a collisionless, unmagnetized four-component dusty plasma consisting of 

negatively and positively charged cold dust fluids, and inertialess electrons and positive ions in the 

presence of a polarization force acting on massive charged dust grains. In a low frequency 

phenomena in the regime where dust dynamics is important, the inertia of the electrons and ions is 

assumed to be neglected and can be described by Boltzmann distribution. Thus, the number 

densities for electrons ( ) and ions ( ) can be given, respectively, by  

 
(1) 

 
(2) 

where  is the equilibrium number density of electrons (ions),  is the electrostatic potential. 

When the electrons and ions are considered to be Bolzmannian, the polarization force acting on a 

dust grain can be written as [9, 10] 

 
(3) 

where  is the grain charge and   is the linearized Debye radius and can be expressed as: 

 
(4) 

Normalized by  and assuming that the potential perturbation is sufficiently small i.e., 

, we rewrite the linearized Debye radius   as (see Ref. [29] for more details) 

 

(5) 

where ,  and 

 with  is the electron-to-ion number density ratio at 

equilibrium. Substituting Eq. (5) into Eq. (3), and after some algebraic calculations, we finally 

obtain the following expression of the polarization force [29]  

 
(6) 

where  and  represent the effects of the 

polarization force.  It is obvious from expression (6) that the polarization force is independent of the 

polarity of the dust grains, i.e. the polarization force will always be of the same nature whether the 

charge is positive or negative and it is always in the direction of decreasing Debye length. 

Accordingly, the basic fluid equations (i.e. the continuity, the momentum and the Poisson 

equation) for negative and positive dust components, with the inclusion of the generalized 

polarization force in the dust momentum equations can be written as, respectively,  

 

(7) 
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(8) 

 
(9) 

 
(10) 

 
(11) 

where , , and  are the density, the velocity, and mass, of the negatively 

(positively) charged dust grains, respectively. Here  and  is the ratio of positive-

to-negative dust charge number with  is the number of charges residing on the positive 

(negative) dust grain surface. At equilibrium, the quasi-neutrality condition requires 

 where  ( ) is the equilibrium number density of positively 

(negatively) charged dust grains. 

For notational clarity, we normalize the dynamic variables appearing in Eqs. (7)-(11) as 

follow: , , ,  and  where 

being the sound speed of the negatively charged dust. The time  and space 

 variables are normalized as  and where  is the 

plasma frequency of the negatively charged dust and  is Debye length 

of the negatively charged dust. Thus, Eqs. (7)-(11) becomes  

 

(12) 

 
(13) 

 
(14) 

 
(15) 

 
(16) 

where , ,  and .  

       For simplicity, we may also expand the exponential functions in the normalized Poisson’s 

equation (16) up to second order in . With using this expansion, Poisson’s equation is simplified 

to 

 
(17) 

where the coefficients  and  are calculated to be , and . 

3.  Kortewg-De Vries (KdV) Equation 

Since we are dealing with a weakly nonlinear theory for the small but finite amplitude DA 

waves, we employ the reductive perturbation method [30] to derive the K-dV equation. So, at first, 

we introduce the space and time stretched coordinates as 

 (18) 
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where  is a smallness parameter characterizing the strength of the nonlinearity and is the 

normalized linear phase velocity of the DA wave. Then, we expand the dynamical quantities of the 

system about their equilibrium values in power series of  as:  

 (19) 

where  and  .   

Substituting equations (18) and (19) into equations (12)-(17) and collecting the terms in 

different powers of , we get the following equations for lowest order 

 

(20) 

 

(21) 

 (22) 

From these equations we get the linear phase velocity relation of solitons as  

 

(23) 

It is obvious from Eq. (23) that the value of  decreases with the increasing values of  i.e., the 

polarization force effect causes a decrease of the wave phase velocity. This effect becomes more 

and more important for larger dust grains.  

The next-order in  gives another set of coupled equations. Solving these equations with the 

aid of Eqs. (20)-(22), we finally obtain the well-known KdV equation as  

 

(24) 

where the coefficients of nonlinearity ( ) and dispersion ( ) appearing in the K-dV equation are 

given by  

 

 

and   

        

 

4.  Multi-Soliton Solutions of KdV Equation 

In order to examine the collision of a multi-soliton in the framework of a KdV equation (24), 

we employ the Hirota bilinear method. We first use the transformation: , 

, and    to convert the KdV equation.(24) to its standard form. 

Then we get  

 

(25) 

Note that the standard KdV equation (25) can have multi-soliton solutions describing the 

dynamics of interactions (collisions) of the multi-soliton. The solution of the standard KdV equation 

(25) can be expressed by 
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(26) 

where the function  is chosen to have a perturbation expansion form, defined as 

 (27) 

where  is a non-small formal expansion parameter. The unknown functions ,  can 

be determined later. Substituting Eq. (26) into a standard KdV equation (25), integrating once and 

setting the integration constant equal to zero, allows us to replace (25) by 

 (28) 

This equation is a quadratic equation in  (Hirota usually refers to this as a bilinear equation). 

Using the Hirota bilinear-D operator notation, equation (28) can be written as  

 (29) 

In order to obtain the  Multi-Soliton solutions of a KdV equation,  we solve the bilinear equation of 

the KdV equation.    Substituting Eq. (27) into Eq. (29) and equating to zero the powers of , yields 

:  (30a) 

:  (30b) 

:  (30c) 

:  (30d) 

   

: 

 

(30e) 

where , and  . From equation (30d) we obtain 

 

(31) 

Equation (31) must be solved recursively to find  with . 

From Eq. (31), when , ,  we have 

 

(32a) 

 

(32b) 

 

(32c) 

 

(32d) 

Here,  is assumed to be  

 

(33) 
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where ,  is the wave number and  is the frequency. Substituting Eq. (33) into 

Eq. (32a) we have . 

4.1. Two-soliton Solutions 

To determine the two-soliton solutions of Eq. (25), we choose  in Eq. (33), and then 

 with ,  is a constant represents the initial 

phases of solitons,  . Substituting  into equation (32b) we have 

 

(34) 

Therefore, we assume   is a solution of Eq. (34) where  is a coupling 

constant yet to be determined. Substituting this formula (i.e.,  ) into Eq. (34), and solved for the 

coupling constant  in the terms of wave numbers  and , we get 

 

(35) 

which is determines the phase shifts of the respective solitons after overtaking collision (note that 

 ). Now we substitute the solutions of  and  into Eq.  (32d) we see that, . Thus, 

without loss of generality we have set  , the perturbation series expansion (27) becomes   

 (36) 

which is the two-soliton bilinear solution for the stander KdV equation (25). Now, Substituting Eq. 

(36) into Eq. (26), the two soliton solution of the standard KdV equation (25) is given by 

 

(37) 

Hence, the two-soliton solution of the KdV equation (24) is given by 

 

(38) 

where + ,  . Thus, for KdV equation (24),  Eq. (26) can be rewritten 

as  

 

(39) 

where   for two-soliton solution is given by 

 (40) 

which represents the solution of the two-soliton bilinear form of the KdV equation (24) where 

, and  . We note that the two-soliton KdV 

solution (24) can be represented in a number of equivalent forms emphasizing different aspects of 

the soliton interaction dynamics. 

4.2. Three-soliton Solutions   

To obtain the three-soliton solutions of the KdV equation, we follow the same way as above 

by setting  in Eq. (33) to get , and after algebraical 

calculations, the three-soliton bilinear solutions for the standerd KdV equation (25) is: 

 

(41

) 
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where the coefficients , ,  and  are given by 

 

 

and 

 

 

Therefore, the three-soliton solutions of the KdV equation (24) can be written in the form 

 

(42) 

where the function  is obtained as 

 
(43) 

where , .  

5. Behavior of Soliton Collisions and Phase Shifts 

It is noted that there is no amplitude (or velocity) change upon multi-soliton interactions 

associated with the KdV equation. In other words the interaction is elastic and the only effect of the 

interaction is a phase shift. In this section we study the behavior of the two solitons interactions of 

the KdV equation when , and we derive the formula for the phase shift of the fast-moving 

and slow-moving soliton, and hence we are generalized this idea on three-soliton interactions.  

Now, to obtain the phase shifts due to the interaction of the two-soliton, we introduce the 

transformation, . Then,  can be rewritten in terms of  as 

 (44) 

If we consider that  , and  in Eq. (44), we get 

 

 

(45) 

where we note that . The frame of the first (slow) soliton, in which  is fixed, and 

 remains finite, we take the limits cases as .  

Whenever , , and therefore Eq. (40) leads to  

 (46) 

Substituting Eq. (46) into Eq. (39), carrying out some algebraic calculations, the solution of 

Eq. (24) is given by 

 

(47) 

where we put  in the Eq. (46), and using the identity   in 

the Eq. (47). However, it is appropriate to re-write Eq. (47) in the form   

 
(48) 

where  is the amplitude of the first (slow) soliton and  is the 

phase change of it. 
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 Now, we consider the case when . In this case, we have , and hence 

. Therefore Eq. (40) converts to  

 (49) 

Similarly, using this formula in Eq. (39) we have by direct calculation  

 
(50) 

From Eqs. (48) and (50) we see that, after the collision of the two-soliton, the asymptotic 

trajectory of the slow soliton is shifted backward by a phase shift equal to  

 
(51) 

where the minus sign indicates the backward shift. 

On the other hand, to obtain the phase shift of the second (fast) soliton after collision with 

first (slow) soliton, we choose , then from Eq. (44) we get  

 

 

(52) 

Similarly, in the frame of the fast (second) soliton, we take the limits as  where  

fixed, and  remains finite. Then as , , and from Eq. (40) we have  

 (53) 

whereas for , Eq. (52) gives , hence . Then, Eq. (40) reduced to   

 (54) 

Thus from Eq. (39) the two-soliton solution of Eq. (24) is given, in either limit, , by  

 
(55) 

where  is the amplitude of second soliton and   is the shift of the 

trajectory of the second (fast) soliton due to its interaction with the first (slow) soliton. Here, 

 for , and  for . From the above formulae we see that the 

asymptotic trajectory of the fast soliton is shifted forward by the phase shift  

 
(56) 

It is seen that the phase shifts , and  are of opposite signs and both of them are 

proportional to ; subsequently the phase shifts will also depend on the dusty plasma parameters.  

For the three-soliton interactions, it is easy to see that the phase shift of the first soliton ( =1) 

due to the other solitons is defined by  

 
(57) 

and the phase shifts of the second and third solitons respectively are given by 
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(58) 

 
(59) 

where . It is clear that the phase shifts are functions of the dispersion coefficient 

 and consequently function of the polarization parameter as well as other plasma parameters.  

6. Results and Discussion 

The propagation and  interaction of the DA solitons in an unmagnetized collisionless dusty 

plasma containing  inertial negatively as well as positively charged dust cold, and thermal  ions and 

electrons are investigated. The reductive perturbation technique is employed in order to derive the 

KdV equation which is appropriate for describing the DA solitons propagation. The Hirota bilinear 

method is used to study the overtaking collision of multi-soliton solutions. Figure 1 shows the time 

evaluation of the interaction between two compressive DA solitons (  vs  ) moving in the same 

direction from left to right with the faster (taller) soliton overtaking the slower (shorter) soliton. It is 

observed that, at the initial time τ = −6, the faster (taller) soliton with large amplitude is located 

behind the slower (shorter) one (which has the smaller amplitude). As we evolve in time, the taller 

soliton will catch up the shorter one and they collide with each other. For , the two solitons 

merge together into a single hump profile (become a single soliton) with amplitude is equal to the 

difference between the amplitudes of the two solitons before its interaction. After finite time, a large 

soliton overtakes a small one and after time τ = 6, they regain their original shapes. The only 

noticeable change due to the interaction of the two solitons is a phase shift from where the wave 

would have been if there was no interaction.  

The combined profile of the compressive two-soliton interaction is presented in Figs. 2(a) and 

2(b) where Fig. 2(a) is plotted without polarization force effect (i.e., when ) while Fig. 2(b) is 

plotted with polarization force. From these figures, we can see that there is a shift in the solitons due 

to an elastic collision and the nonlinear interaction, this shift is called the phase shift. The phase 

shift is particularly large for the small amplitude soliton. The larger amplitude soliton shifted 

forward whereas the smaller one shifted backward due to the collision. It is also observed that, the 

polarization force leads to reduce the amplitudes of both larger and smaller solitons.  

 



J. Amr. Uni. 01 (2021) p. 129 Mahmood A. H. Khaled et al  

139 
 

Figure 1: Compressive two-soliton profile for various , with , , ,  , , 

, , and . 

 

 
Figure 2: The interaction profile of the compressive two-solitons and its contour plots. (a) without polarization force 

effect ( ), and (b) with polarization force effect ( )  and for  , , ,  , 

, , and . 

 

To clarify more, Fig. 3 shows a plot of the superimposition of the lines of the asymptotic 

trajectories of the slow and fast solitons on the contour plot of the two-soliton solutions. It is found 

that the asymptotic trajectory of the slow-moving soliton is shifted backward by a phase shift equals 

to  (the minus sign indicates the backward shift.), and the asymptotic trajectory 

of the fast-moving soliton is shifted forward by a phase shift equals to . The line 

of asymptotic trajectories passes through the middle of the slow and fast moving solitons both in the 

infinite past and future in time, which shows that the analytic computation is correct.  Comparison 

of Fig. 3(a) and Fig. 3(b) demonstrates that the polarization force has a significant effect on the 

phase shift and the asymptotic trajectories of both solitons. 

 

 

 
Figure 3: Superimposition of the trajectories on contour plot of the compressive two-soliton. (a) Without polarization 

force effect ( ).  and (b) with polarization force effect ( )  and for  , , ,  

, , , and  
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Figure 4: Rarefactive two-soliton profile for different values of , with  , and with same values of other 

parameters as Fig. 1. 

On the other hand, the time evaluation of the interaction of rarefactive two solitons is 

displayed in Fig. 4 when . Similarly,  we can see that at , the taller soliton is 

behind the smaller one, and when  , the taller soliton is getting closer to the shorter one. The 

two solitons merge and become one soliton at . But after certain time , they separate 

from each other, and then finally they depart from each other when . 

 

Figure 5: The interaction profile of the compressive two-solitons and its contour plots. (a) without polarization force 

effect ( ), and (b) with polarization force effect ( )  and for  , , ,  , 

, , and . 

The combined profile of the rarefactive two-soliton collision is presented in Figs. 5 (a) and 5 

(b) without and with polarization force effect, respectively. As it clear from these figures, the 

smaller soliton is retarded in time whereas the larger one is pushed forward. Figure 5(b) depicts that 

the presence of the polarization force leads to an increase in the amplitudes of both larger and 

smaller solitons. Clearly, the modification in the phase shift due to the presence of the polarization 

force is also visible in Fig. 5(b). Also, Figs 6(a) and 6(b) show a plot of the superimposition of the 

lines of the asymptotic trajectories of the slow soliton and fast soliton on the contour plot of the 

rarefactive two-soliton collision in the absence of the polarization force [Fig. 6(a)] and in the 

presence of the polarization force [Fig. 6(b)]. From these figures, we can also see that the line of 
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asymptotic trajectories passes through the middle of the slow and fast moving solitons both in the 

infinite past and future in time. It is found also from figure 6 that, the asymptotic trajectory of the 

slow soliton is shifted backward by a phase shift equals to , and the asymptotic 

trajectory of the fast soliton is shifted forward by a phase shift equals to . Due to 

the presence of the polarization force, the lines of asymptotic trajectories of two solitons are shifted.  

 
Figure 6: Superimposition of the asymptotic trajectories on contour plot of the rarefactive two-soliton. (a) without 

polarization force effect, and (b) with polarization force effect and for  , , ,  , 

, , and  

 

In Figs. 7 and.8, the time evolution of the interaction of both compressive and rarefactive 

three-soliton profile respectively have been plotted with the plasma parameters: , , 

 , , , , , and . From these figures, we have shown 

that for   larger amplitude soliton is behind all other small amplitude solitons. When 

, the three solitons merge and become one soliton at . But, at , they separate 

from each other, and then finally they depart from each other when . 

 

 

Figure 7: Compressive three-soliton profile for various , with , ,  , , and other 

parameters same as Fig. 1.  
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Figure 8: Rarefactive three-soliton profile for different values of , with  . The  other parameters as in Fig.1. 

 

 
 

Figure 9: The interaction profile of the compressive three-solitons and its contour plots. (a) without polarization force 

effect ( ), and (b) with polarization force effect ( ). Other parameters are taken a , , 

,  , , , and . 

Figure 9(a) shows an overtaking elastic collisions of three compressive solitons in  plane 

with its contour plot when  (i.e., without the polarization force). Figure 9(b) illustrates an 

overtaking elastic collisions between three-soliton in  plane with its contour plot at  

(i.e., when polarization force is considered). In Figs. 9(a) and 9(b), soliton with large amplitude 

travels faster and catches the smaller one. After the collision, the three solitons remain their original 

shapes and amplitudes expect for the phase shifts. Furthermore, in the presence of the polarization 

force, the amplitude of the multi-soliton will decrease as depicted in Fig. 9(b). The phase shift is 

also visible in Fig. 9 due to the interaction among the three solitons. 
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Figure 10: The interaction profile of the rarefactive three-soliton and its contour plots. (a) without polarization force 

effect ( ), and (b) with polarization force effect ( ). Other parameters are taken as , , 

,  , , , and . 

 

The interaction profile among three rarefactive DA solitons propagates in the same direction 

with their corresponding contour plots is shown in Fig. 10. One can clearly see that the soliton with 

larger amplitude has a greater velocity than another with smaller amplitude. Consequently, as time 

goes on, the larger soliton catches up with the smaller one and the collision occurs and the larger 

soliton has overtaken the smaller one. From Figs. 10(a) and 10(b), it is noted that the amplitudes of 

the rarefactive DA solitons in the presence of polarization force [Fig. 10(b)] are larger than those in 

the absence of the polarization force [Fig. 10(a)]. Furthermore, we find that the change of trajectory 

for each DA soliton is evident after interaction. 

Figure 11 illustrates the variation of phase shift  after the interaction of two solitons against 

polarization force parameter , for two different values of  with , , 

, , , . It is noticed that with an increase in the polarization force 

parameter , the phase shift decreases, but it is increasing with the increase of . The effect of the 

polarization force on the phase shift is more pronounced for lower value of  . 
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Figure 11: The phase shift ( ) after the overtaking interaction between two DA solitons versus the polarization force 

parameter  for two different values of  with ,  , , , , and . 

 

 
Figure 12: The phase shift ( ) after the overtaking interaction between two DA solitons   versus the polarization force 

for different values of   when Z=0.2. Other parameters are  ,  , , , and . 

In Figs. 12 and 13, we have presented the variation of phase shift  against the polarization 

parameter  with different values of the ion-to-electron temperature ratio  in the cases of   

and , respectively. As shown in Fig. 12, in the case of , an increase of both the 

polarization parameter  and , decreases the phase shift  . However, in the case of , 

Fig. 4 indicates that, within the range of , the phase shift  decreases as both of the 

polarization parameter  and the ion temperature  ratio  increase, but in the range of , the 

phase shift increases with the increase of . This means that the influence of the polarization force 

decreases with increasing ion temperature. Figure 14 shows the dependence of the phase shift on 

both of the electron-to-ion density ratio   and positive-to-negative dust ratio . It turns out that the 

phase shift  decreases as the ion density  increases. But  increases with the increase of  .   

 

 
Figure 13: The phase shift ( ) after the overtaking interaction between two DA solitons   versus the polarization force 

for different values of  when Z=0.01. The other parameters as in Fig. 11.  
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Figure 14: The phase shift ( ) after the overtaking interaction between two DA solitons versus  for different values 

of  with ,  , , , and Z=0.01. 

Figure 15 indicates the variation of the phase shift  with  for different values of  after the 

overtaking interaction between three solitons with , , ,  , , 

, and  =5. As depicted in Fig. 14, the phase shift  increases with the increase of , but it 

decreases with the increase in . 

 

Figure 15: The phase shift ( ) after the overtaking interaction between three DA solitons   versus the polarization 

force for different values of  with , , ,  , , , and  =5. 

 

7.  Conclusion 

In this paper, we have studied the nature of the nonlinear propagation and interaction of two-

soliton and three-soliton solutions of the KdV equation (24) in an opposite polarity dusty plasma 

consisting of negatively and positively charged cold dust fluids, Boltzmann velocity distributed 

electrons and ions, including the generalized polarization force. The KdV equation (24) is 

transformed into a standard KdV equation (25) by using a suitable transformation. By using the 

Hirota’s bilinear method, the two-and three-soliton solutions for the KdV equation (24) have been 

successfully obtained. Both compressive and rarefactive solitons are found to exist in the dusty 

plasma. The large value of  is found to yield compressive solitons and smaller  is found to yield 

rarefactive solitons. Plots of the solutions were made and it was shown that the solitons interact and 

keep their forms after collision with one another. It has been observed that the soliton with large 

amplitude travels faster and catches the smaller one. After the overtaking collision, the solitons 
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retain their original shapes and amplitudes expect for the phase shifts. It was observed that the 

larger amplitude soliton shifted forward while that of the smaller amplitude shifted backward as a 

result of the phase shift. 

It has been found that, the phase shifts are significantly affected by the polarization force 

parameter , number charge ratio , ion-to-electron temperature ratio , positive-to-negative dust 

mass ratio , and the ratio of the densities of electrons to ions .  Finally, it is observed that the 

polarization force gives a higher amplitude in the case of rarefactive solitons and gives a smaller 

amplitude in the case of compressive solitons.  
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