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Abstract 

In this paper, we study the distribution of the constraints according to the thickness and analyze the me-

chanical behavior in inflection, while insisting on the interactions with the interfaces of the layers and the 

vicinities of the limiting edges. We detail these stages through the application by mentioning the character-

istics of each model taken independently of the others. The results are presented in the form of a summary 

table and figures. To compare the various models of the theory of the plates, this characteristic of the edges 

enables us to consider the precision of the sinusoidal model compared to the traditional models of the plate 

theory. We are interested in one of the current problems of the multilayer laminated composites, which is 

the analysis of the distribution of the stress fields in the vicinities of the edges and in the interfaces of the 

layers, which play a crucial role in the mechanical resistance of the laminates.  
 
Keywords: laminated structures, composite materials, finite element method.    

سة توزيع القيود حسب سمكها ونحلل السلوك الميكانيكي في الانعطاف مع التركيز على افي هذا البحث قمنا بدر  الملخص:
التفاعلات مع واجهات الطبقات ومحيط الحواف المحددة، ونقوم بتفصيل هذه المراحل من خلال ذكر خصائص كل نموذج 

لمنحنيات. من أجل مقارنة النماذج مأخوذ بشكل مستقل عن النماذج الأخرى. يتم عرض النتائج في شكل جدول موجز واشكال ا
المختلفة لنظرية الصفائح نلاحظ أن هذه الخاصية للحواف تمكنا من النظر في دقة النموذج الجيبي مقارنة بالنماذج التقليدية 

الإجهاد قول الطبقات وهي تحليل توزيع حالرقائقيه متعددة لنظرية الصفائح.  نحن مهتمون بواحدة من المشاكل الحالية للمركبات 
 في المناطق المجاورة للحواف وفي واجهات الطبقات التي تلعب دورا أساسيا في المقاومة الميكانيكية للصفائح.

 

1. Introduction  

Nowadays, the further development of composite materials has attracted the attention of scientists 

and engineers in various fields, such as aerospace, transportation, and other branches of civil and 

mechanical engineering. In recent years, there has been an increasing number of applications in which 

composite materials are involved.  

It is used in most engineering fields, especially in the aerospace industry, because of its lightweight, 

high specific strength and stiffness, corrosion resistance, and high thermal resistance. They should be 

able to maintain their original shape and strength when subjected to thermal and mechanical loads. 

Thus, the composite material should be able to carry fatigue and creep. A good performance of com-

posite materials depends on good adhesion at the interface between fiber and matrix. [7], [12], [17], 

[19]. Many researchers have tried to analyze the casting process. Thomas et al. (1987) developed a 

two-dimensional mathematical model to predict internal stress generated in a steel ingot using the 

Finite Element Method. [13], [14]. The modeling of the laminated structures is based on the theory 
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of the "thick" plates introduced by E Reissner [16] and R. D. Mindlin [18], in the case of the isotropic 

homogeneous mediums considering that this theory is poorly adapted for the study of the composite 

plates, of many authors [1],[ 4], [6], [10], [7], [14 ] proposed his improvement by giving a more or 

less refined field of displacements. It is noted that the refined theory considers the warping of the 

trans versant segment and gives a good approximation for the constraints. 

The distribution of stresses shear transversely can take a parabolic or sinusoidal form in the thickness 

of the plate [6], [9], [10], [21]. A typical composite structure consists of a system of layers bonded 

together. The layers can be made of different isotropic or anisotropic materials and have different 

structures, thicknesses, and mechanical properties. In contrast to typical layers whose essential prop-

erties are determined experimentally, the laminate characteristics are usually calculated using infor-

mation concerning the number of layers, their stacking sequence, and geometric and mechanical prop-

erties, which should be known. This requires more careful design and analysis for composite struc-

tures to be addressed to account for structural behavior accurately. This characteristic does not make 

it possible to model with precision the interactions that develop with the interfaces of layers and to 

check the transfer effects of load, which is paramount for the design of laminated [15], [21], [22]. 

Among the solutions proposed to solve this problem, we quote the work of Pagano [ 4], [ 6] and 

Srinivas [2], [3], [12], [13], which proposed three-dimensional solutions to obtain exact solutions for 

the behavior of the edges of the laminates, as well as the approach of La devèze [2], [5], [8], [ 10] 

which proposed to solve a three-dimensional problem in the zone of edge and a two-dimensional 

problem inside the plate. The characteristic of these models is to consider the warping of the trans-

verse segment and to check precisely all the limiting conditions at the borders. The finite element 

method can analyze properties and processes in composite structures. We can be attractive in some 

instances, mainly when the repetitive mesh of the lattice is complex, to reduce the size of the problem 

by defining a continuous medium is equivalent to the structure considered. Mainly, we are interested 

in one of the current problems of the multilayer laminated composites, which is the analysis of the 

distribution of the stress fields in the vicinities of the edges and in the interfaces of the layers, which 

exploit a paramount role in the mechanical resistance of the laminates [20], [21. For the forecast of 

the mechanical behavior of each layer constituting the laminate, in the case of the reinforcement with 

parallel fibers.  

 

2. Laws of behavior  

We place within the framework of the theory of the plates. Consequently, by introducing an unspec-

ified function q and by using a formulation of the problems in extreme cases   in such a way as to 

satisfy the principle of the virtual powers and all the limiting conditions of the borders, we lead to 

the relations of the generalized efforts, which are written in the form: 

 Nij  Aijkh

v
k

xh

 Dijkh

2w

xkxh

 ˜ D ijkh
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k

xh

                                                                               (1.1) 
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  ̃Q i 
 ̃A i3 j3 j                                                                                                (1.4)

       i, j, k, h  = 1, 2) 

3. Applications 
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3.1 Case of a plate laminated in simple supports on two edges 

Given the intricate nature of the problem formulation, our focus is on a simplified case study involv-

ing laminated, orthotropic plates subjected to transverse loads, which can be concentrated or distrib-

uted [2], [7]. This presentation applies to all plate models [ 4], [6], [11], demonstrating the various 

calculation stages necessary to obtain equilibrium equations and ensure their resolution by defining 

boundary conditions and adapting model assumptions to our calculations. Specifically, we delve into 

the distribution of constraints across the thickness and scrutinize the mechanical behavior in inflec-

tion, emphasizing the interactions with the layer interfaces and the edges. 

The translation of these boundary conditions depends on the nature of the conditions cinematics and 

imposed mechanics in terms of displacements is done by taking account of the law of behavior, given 

by the relations (1) 

 

3.2.   Equilibrium equations and boundary conditions 

 It is about a plate laminated, orthotropic, and made up of four layers, directed with (900/00, /00/900) 

and subjected to a transverse load distributed )( 21, xxq . It is supposed that the plate is in simple sup-

ports on the two parallel edges (fig.1). The mechanical characteristics are identical to those used by 

Srinivas [2] and Ladevèze [10]. By using the same semi-infinite formulation of the plate and while 

being limited to the static study, the equilibrium equations are written in their following general form:  
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−

𝐴̆2222𝛾2=0                                                                                                                                (2 .3) 

x1

x2

x3

L

h

q = q0.sin(x1/L)

h1

h2

h2

h1

. 

Fig.1. Geometry of the laminated plate and boundary conditions  

(L = 1 m, H 1 = 0,01m, H 2 = 0,04 m, Q 0 = -1 MPa) 

To solve this system, we introduce the boundary conditions (cinematics and natural) on the edges. 

Thus, by considering the case of  (Fig.1), where the plate is in simple supports on the axis 01 x  
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Lx 1
and free on the two others, the boundary conditions are written in terms of displacements by 

taking account of the laws of behavior (1) : 

For the natural conditions on the free edges (
2x = 0 and 

2x = L, whatever 
1x )  
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For the conditions cinematics on the superficial edges of supports (
1x = 0 and 

1x = L, whatever
2x ): 

w  1  2  0                                                                                                                      (3 .4)  

It is pointed out that these equations include the general case of the theory of the plates where the 

function )( 3xg is any type of model. Thus, within the framework of the theory of  Reisner and the 

refined theories  (Reddy, Sinusoidal), we keep the same equilibrium equations (2 ), and we modify 

the relations that govern the coefficients of elasticity by specifying the form of the function )( 3xg  

according to the type of the model considered. Within the framework of the theory of Kirchhoff where 

( )( 3xg = 0) and of which we neglect the effects of transverse shearing ( 021   ), the equilibrium 

equations are summarized:  
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4.   Resolution of the problem   

The resolution of the problem consists in the forms of developments in the Fourier series according 

to the technique of Naiver relating to the cases of the simple bearing plates on all the borders of the 

plate or that of Levy, which treats the case of the simple bearing plates on two parallel edges and 

letting at the other edges the free possibility, be supported or embedded. In the general case of a 

rectangular plate, subjected to conditions cinematics on the four borders, displacements and the trans-

verse load )( 21  , xxq are developed according to the double Fourier series.  

q(x1 ,x2) =  qmn sin
nx1

L
sin
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                                                                                  (5.1) 

ui(x1 ,x2) =  Umn
i

sin
nx1

L
sin

nx2

lm=1




n=1



                                                                                  (5.2) 

However, we limit ourselves in our resolution to the cases of the simple bearing plates on two parallel 

edges (fig.1), which can be supported or embedded on the two other free edges, as in the technique 

of Levy. Thus, by proposing a uniform transversal loading according to the direction 
2x and the equi-

librium equations, displacements and the transverse load are put in the form. 

 

 w(x1, x2 )  W(x2)sin(x1 / h)                                                                                             (6.1) 
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 1(x1, x2)  1(x2 )cos(x1 / h)                                                                                             (6.2) 

  2(x1 ,x2)  2(x2) sin(x1 / h)                                                                                               (6.3) 

 q(x1)  q0 sin (x1 / h)                                                                                                         (6.4) 

Work thus consists of supplementing the solutions (6) by determining the functions )( 2xW )( 2xi so 

that they check the equilibrium equations and the boundary condition on the edges, with the added 

restriction of imposing a cinematics condition of simple supports on two parallel edges, as required 

by the technique of Levy. We note that this proposed form of displacements satisfies well the bound-

ary conditions of simple supports on the axis  01 x  and Lx 1
whatever

2x :  

w(0, x2 )  w(L,x2)  0                                                                                                                         (7.1) 

1(0 ,x2)  2 (L,x2)  0                                                                                                          (7.2) 

M11(0, x2 )  M11(L,x2)  0                                                                                                          (7.3) 

˜ M 11(0, x2 )  ˜ M 11(L,x2)  0                                                                                                         (7.4)  

Thus, by introducing the relations of displacements into the equilibrium equations (2), we obtain the 

system of equations:  
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With:       𝑎 =
𝜋

𝑙
 

The general solution of this system, without a second member ( 0q = 0), is given by:  

W(x2)  Ai exp(ix2 )                                                                                                                    (9.1) 

1(x2)  Bi exp(ix2)                                                                                                                    (9.2)  

2 (x2 )  Ci exp(ix2)                                                                                                                    (9.3)  

Where iA iB iC  are the constants to determine by using the boundary conditions natural and cinemat-

ics and i are the roots of the equations characteristic associated with the system of differential equa-

tions: 
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The coefficients i are obtained while canceling to determine the matrix
ijA : 

  0)(det iijA                                                                                                                                     (11)  

Finally, the general solution of the equilibrium equations is obtained by superimposing the particular 

solution and the homogeneous solution without a second member ( 0q = 0) and by taking account of 

the cases where the roots i are simple or multiple. The form of the general solution is written 
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Where p is the number of the simple roots and pn is the number of the multiple roots. 

 

5.   Results  
The results are presented in the form of a summary table and figures. In order to compare the various 

models of the theory of the plates, we keep as a reference the results resulting from calculations by 

finite elements method within the framework of elasticity three-dimensional Table I represents the 

maximum values of the arrow and the constraints dimensionless by using the following relations:  

ij (x1 ,x2 ,x3) 


ij
(x

1
, x

2
, x

3
)

q0

      (13.1)                   )()( 21

0

2222
21 ,

.100
, xxw

hq

C
xxw      (13.2) 

Table. I. Maximum values of the dimensions constraints and displacement. 

 w  
(L/2,L/2) 

11  

(L/2,L/2,h/2

) 

22  

(L/2,L/2,h/2

) 

12  

(3L/4,3L/2,h/

2) 

13  

(L/4,L/2,0) 

23

(L/2,L/4,0) 

Kirchhoff Love 83.78 124.22 20.72 3.25   

Reissner 117.51 128.21 17.51 5.35 2.11 0.21 

Reddy 112.31 119.15 18.91 5.33 2.28 2.24 

Sinus 112.73 123.23 18.52 5.41 2.41 0.26 

E.F. 116.42 130.13 18.47 5.39 2.39 0.28 

 

In the representative curves, we limited the comparisons of three significant models. The results ob-

tained by the sinusoïdal model, compared with the traditional model of Reissner and numerical cal-

culations by finite elements method. We note that calculations by finite elements method required 

using a three-dimensional mesh consisting of 2770 cubic elements with 20 nodes (Fig. 2). The figure 

(3 to 8) compares the results from the abovementioned models. On the other hand, we note an excel-

lent agreement of the results relating to the evolution arrow along the axis (x1, x2 = L/2, x3=0)(Fig. 

3). In addition, in the figures relating to the distribution of the constraints according to the thickness 

of the plate, in the vicinity of the free edge (fig.4), we note the inaccuracy of the model of Reissner 

for the constraints 13 and 23 . The errors are estimated at 1,7 % for the arrow and 1,9 % for the 

constraint
11 . The figures relating to the constraints (

11 ,
22 ,

12 , 13 and 23 (Fig. 4 to 8)) confirm 

the excellent behavior of the sinusoidal model compared to three-dimensional calculations by the 

finite elements method. However, we note the significance of the discontinuity of the constraints to 
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the interfaces of the layers of the plate. The differences between the constraints in the vicinities of the 

interfaces decrease for the model sinusoïdal, compared with the model of Reissner. The distribution 

of the constraints in the two external layers highlighted effects edges. We note that this characteristic 

of the edges makes it possible to consider the precision of the model sinusoidal compared to the 

traditional models of the theory of the plates. 
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Fig. 2. Grid of the laminated plate                           Fig. 3.The arrow W in average plan along the axis (X 1, L/2, 0). 
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6. Conclusion  

In this work, the results obtained are validated starting from the three-dimensional solution and 

compared with the other ideal models. These results are validated by comparing the arrow 

values and constraints from the numerical calculation using the finite elements method for 

plane strain to those obtained from different plates theory. We noted excellent agreement of 

the results relating to the evolution arrow along the axis, and the distribution of the constraints 

according to the thickness made it possible to note the discontinuity of the constraints, which 

can explain the importance of the interfaces in the performances of the laminated structures. 
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